
AGH UNIVERSITY OF KRAKOW

THE FACULTY OF COMPUTER SCIENCE,

ELECTRONICS AND TELECOMMUNICATIONS

Master’s thesis

Software Provenance Assurance through Reproducible Builds

Potwierdzanie autentyczności oprogramowania

poprzez powtarzalność kompilacji

Keywords: software supply chain threats, reproducible builds, software
provenance, software packaging, npm Registry

Author: Wojciech Kosior

Major: Cybersecurity

Supervisor: dr hab. inż. Piotr Pacyna, prof. AGH

Kraków, 2025

Acknowledgements

I could have decided not to enroll for the MSc course in the first place. But, having

experienced some failures in my career, I started asking what God would like me to do. I

recalled that even though at various moments it was unpleasant to be a student, university

was a place that suited me more that places I have been to afterwards. I assumed that

maybe – just maybe – God did not want me to succeed anywhere else because He wants

me to be happy here, in the academia. And so I am, finishing this unusual piece of

research. Thank God.

I also want to thank my wife, Joanna, who supported me even though she regularly

had to suffer listening about my boring computer topics. I thank my father, who at times

seems to care for my successful defence even more than I do.

Finally, I could not forget about my supervisor who – luckily for me – was corageous

enough to undertake supervising a thesis in the software supply chain field, which few

students pursued before. Thank you!

ii

Contents

List of Figures v

List of Listings vi

List of Tables vii

Abstract viii

Streszczenie ix

1 Introduction 1
1.1 Problem formulation . 2

2 Contemporary guidance and standards in the field of software supply
chain security 7
2.1 Software Component Verification Standard 8
2.2 Supply Chain Levels for Software Artifacts 9
2.3 Secure Supply Chain Consumption Framework 10
2.4 “Software Supply Chain Best Practices” 10
2.5 “Securing the Software Supply Chain: Recommended Practices Guide” . . 11
2.6 “Recommendations for SBOM Management” 11
2.7 Summary . 12

3 Security tools leveraging reproducible builds 13
3.1 in-toto apt-transport for Debian packages 13
3.2 guix challenge command of GNU Guix . 17
3.3 Continuous tests . 19

4 Applicability of reproducibility workflows to different software ecosys-
tems 23
4.1 Degree of inclusion in Debian and GNU Guix 24
4.2 Dependency tree sizes . 25
4.3 Age of the ecosystem . 26
4.4 Conflicting dependencies . 26

iii

4.5 Difficult bootstrappability . 29
4.6 Inconvenience of system software distributions 31

5 Overview of the npm ecosystem 32
5.1 Recognized dependency types . 32
5.2 Statistical analysis of the npm ecosystem 32
5.3 The most popular development dependencies 35
5.4 Overlap of the most popular runtime and development dependencies 36

6 Possible paradigms for hermeticity and reproducibility 38
6.1 Paradigm 0 – lack of actual reproducibility 39
6.2 Paradigm 1 – inputs determined by human-maintained references 40
6.3 Paradigm 2 – reproducibility not applied to dependency resolution 42
6.4 Paradigm 3 – deterministic dependency resolution inputs ensured 44
6.5 Paradigm 4 – hermeticity relaxed and deterministic dynamic inputs allowed 46

7 Automated package builds experiment 48
7.1 Method and environment . 49
7.2 Build attempt results . 58
7.3 Dependency trees after removals of dependencies and their conflicts 63
7.4 Dependency conflict counts . 64
7.5 Differences in build outputs produced during the experiment 65

8 Conclusions 72
8.1 Naming the main hindrance to packaging the npm ecosystem 72
8.2 Developer-supplied lockfile being infrequently necessary 73
8.3 Indispensibility of direct and indirect npm build dependencies 73
8.4 Typical dependency tree sizes of npm projects 73
8.5 Frequency of dependency conflicts in npm projects 74
8.6 Package disfunctionality caused by dependency tree reduction 74
8.7 Relevance of npm package distribution tags for successful dependency res-

olution . 75
8.8 Prototype for npm dependency resolution under Paradigm 3 75

9 Summary 77

10 Future work 79

References 80

iv

List of Figures

1.1 Overview of a sample software build process. 2
1.2 Overview of a successful multiparty build verification process. 4
1.3 Overview of an unsuccessful build verification process. 4
1.4 Overview of a build verification process which only compared the outputs

of builds performed by a single party and failed to detect malice. 5

3.1 Overview of a verification process inconclusive due to rebuilder’s delay and
lack of determinism. 20

3.2 Reproducibility of Debian Bookworm packages over time, as presented on
Reproducible Builds’ continuous tests website. 21

3.3 Reproducibility of GNU Guix packages as reported by its continuous tests
platform. 22

5.1 Overlap of the most popular npm dependencies from 2019 and 2025. 34
5.2 Number of packages using the most popular dependencies. 35
5.3 Number of packages using the most popular development dependencies. . . 36
5.4 Overlap of the most popular npm runtime and development dependencies

in 2025. 37

7.1 Activity diagram describing the experiment as performed on each tested
npm project. 50

7.2 Statuses of automated hermetized build of top npm projects. 59
7.3 Dependency tree sizes of built npm projects. 64
7.4 Counts of built projects with different numbers of unremovable dependency

conflicts. 65
7.5 Dependency tree sizes of built npm projects. Packages which appear to be

nonfunctional due to aggressive dependency elimination are not included. . 70
7.6 Counts of built projects with different numbers of unremovable dependency

conflicts. Packages which appear to be nonfunctional due to aggressive
dependency elimination are not included. 71

v

List of Listings

3.1 Excerpts from a 176-lines long debian/control file of the nodejs Debian package. 15
3.2 A patch used by Debian package shc to provide an upstream script with

the correct path of the rc executable, as present in Debian. 15
3.3 Excerpt from a 2045-lines long debian/rules Makefile of the binutils Debian

package. 16
3.4 Excerpt from a 256-lines long .buildinfo file of the haskell-base-compat-batteries

Debian package. 16
3.5 Recipe of python-axolotl GNU Guix package. 18
4.1 Multiple occurances of tslib package in a dependency tree. 27
6.1 List of consecutive changes committed to GNU Guix, with contents of the

bottommost one included for reference. 41
7.1 Details of the processor used during the experiment, as reported by cpuinfo

utility. 49
7.2 The npm command used to produce an up-to-date lockfile. 53
7.3 The npm command used to install dependencies. 54
7.4 The npm command used to invoke project-specific build operations. 54
7.5 The npm command used to create the built package file. 55
7.6 Error reported by Git upon an attempt to clone a repository using an SSH

URL. 59
7.7 Error reported upon peer dependency resolution failure during ts-node project

build. 61
7.8 Excerpt from diffoscope’s report of differences in built concurrently package

tarballs. 67
7.9 The output of npm run build invocation with a missing dependency reported

by Rollup. 68
7.10 Excerpt from diffoscope’s report of differences in package.json files inside built

@testing-library/user-event package tarballs. 69

vi

List of Tables

4.1 Considered software ecosystems. 25
4.2 Estimated numbers of Debian and GNU Guix packages corresponding to

software from considered ecosystems. 25
4.3 npm Registry packages that require themselves to build. 30

5.1 Dependency types recognized by npm. 33

vii

Abstract

Software faces risk of contamination on multiple stages of its creation and dis-

tribution. One such stage is software’s build, where its initial form – the source

code – is transformed into a form suitable for distribution. A build is called repro-

ducible when it yields bit-to-bit identical outputs when repeated. The reproducible

build can be secured by repeating it on multiple infrastructures and comparing the

outputs. This decreaces the risk of the software getting contaminated through the

build infrastructure used. Certain software projects – in particular, the Debian

operating system – already levarage reproducible builds as a security tool. Mean-

while, several software ecosystems rely on repositories whose packages cannot be

reliably rebuilt and tested for reproducibility. An example is a popular repository

called npm Registry. The software available through the npm Registry gets included

in reproducibility-focused distributions like Debian at slow pace. A great number

and complexity of dependency relations between npm packages were hypothesized

to be the primary hindrances to this process. In this work, a statistical analysis

of the npm ecosystem was performed and existing approaches to reproducibility

in the context of dependency resolution were identified. Additionally, alternative

approaches were proposed that would allow for easier packaging of npm software

while making reproducibility achievable. To verify several stated hypotheses, an

experiment was performed, where builds of the most popular npm projects were

attempted. Projects were built multiple times to test what subset of their npm

Registry dependencies can be removed without causing the build to fail. The com-

plexity and size of project’s minimal dependency tree was found not to be related

to the likelihood of the project having a corresponding Debian package. The results

lead to conclusion that even numerous and complex dependency relations can be

handled in existing reproducibility-focused software distributions. This means that

employing the proposed new approaches is not necessary to apply reproducibility

to npm software in the future. It also means that the inclusion of npm software in

reproducibility-focused software distributions is mostly hindered by other factors

that need to be countered. These were also pointed at the end of this work.

viii

Streszczenie

Bezpieczeństwo oprogramowania może zostać zagrożone na różnych etapach jego

tworzenia i dystrybucji. Jednym z nich jest szeroko rozumiana kompilacja oprogra-

mowania, gdzie jego pierwotna postać – kod źródłowy – jest przekształcana do

postaci odpowiedniej dla dystrybucji. Proces kompilacji nazywamy powtarzalnym,

jeśli przy wielokrotnym przeprowadzeniu daje wyniki bit do bitu identyczne. Powta-

rzalny proces kompilacji może zostać zabezpieczony poprzez przeprowadzenie go na

różnych infrastrukturach i porównanie wyników. Zmniejsza to ryzyko zanieczysz-

czenia kodu oprogramowania przez użytą infrastrukturę. Pewne oprogramowanie

– w szczególności system Debian – już wykorzystuje powtarzalność jako narzędzie

bezpieczeństwa. Jednocześnie, niektóre ekosystemy oprogramowania polegają na re-

pozytoriach, których pakiety nie mogą być w sposób niezawodny przekompilowane

i sprawdzone pod kątem powtarzalności. Przykładem jest popularne repozytorium

o nazwie npm Registry. Oprogramowanie dostępne przez npm Registry jest też, acz-

kolwiek w wolnym tempie, włączane do dystrybucji typu Debian dbających o powta-

rzalność kompilacji. Według postawionej hipotezy to duża liczba i złożoność relacji

zależności między pakietami npm są głównymi utrudnieniami w tym procesie. W ra-

mach pracy została wykonana analiza statystyczna ekosystemu npm oraz zostały

zidentyfikowane istniejące podejścia do powtarzalności w kontekście procesu roz-

wiązywania zależności. Dodatkowo, zostały zaproponowane alternatywne podejścia,

w których pakowanie oprogramowania npm miałoby być łatwiejsze, a powtarzalność

byłaby wciąż osiągalna. Dla zweryfikowania postawionych hipotez przeprowadzony

został eksperyment – próba kompilacji najpopularniejszych projektów npm. Pro-

jekty kompilowano wielokrotnie, sprawdzając, jaka część ich zależności z npm Regi-

stry może zostać usunięta z zachowaniem powodzenia procesu kompilacji. Złożoność

i rozmiar minimalnego drzewa zależności projektu okazały się nie być powiązane

z prawdopodobieństwiem istnienia odpowiadającego pakietu w Debianie. Wyniki

prowadzą do wniosku, że istniejące dystrubucje oprogramowania dbające o powta-

rzalność mogą sobie poradzić także z licznymi i złożonymi relacjami zależności.

Oznacza to, że wprowadzenie zaproponowanych nowych podejść nie jest konieczne,

żeby można było w przyszłości zastosować powtarzalność do oprogramowania npm.

Oznacza to też, że włączanie oprogramowania npm do dystrybucji oprogramowa-

nia dbających o powtarzalność jest w głównej mierze powstrzymywane przez inne

czynniki wymagające zwalczenia. Zostały one wskazane pod koniec pracy.

ix

1. Introduction

Most products of modern industry are composed or made using a number of half-products

and tools. These tend to come from different producers, who themselves rely on their

suppliers. Such half-products might be produced with violations of human rights, un-

ecologically, without meeting certain quality standards, or with patent violations. The

assembly from half-products also creates an opportunity for deliberate sabotage on part

of the supplier. So far businesses have not always successfully mitigated these threats,

which later reverberated in many ways.

Just as a design is often used to manufacture physical products, code written in a

programming language is used to produce software in its target form, e.g., an executable,

a firmware image, or a collection of files. This process of producing software in its target

form can be referred to as software build. Items resulting from it are build outputs. A

software build process overview is presented in Figure 1.1. Depending on the program-

ming languages and technologies in use, the build might encompass different actions, e.g.,

macro processing, compilation, linking, bundling, or compressed archive creation. It can

also utilize a multitude of different tools. Adjusting the build process to meet certain

requirements is often a complex task that requires understanding the workings of vari-

ous tools involved. In some software distribution projects, hundreds of lines of scripts

are maintained to allow proper building of a single piece of software written by another

party. Builds can even involve applying changes to upstream code, often through the use

of patches, i.e., machine-readable files describing changes to project code.

Similarly to physical products, software is made using preexisting elements delivered

by other parties. These are often called dependencies. They include

• runtime dependencies – components to be distributed inside or alognside the final

program and used during its execution, for example reusable modules of code called

libraries or special fonts, and

Kraków, 2025

sample inputs build sample outputs

authors list generation

code compilation

documentation generation

compressed archive generation

operating system kernel

machine

build environment

«orchestrate process»

build metadata recording

build system

software source code

version control integration tool

compiler

library A

library B

library C

typesetting system

file archiver

PDF documentation

program files archive

build metadata files
(bill of materials, etc.)

Figure 1.1: Overview of a sample software build process.

• development dependencies – elements not needed during program’s execution but

useful to its developers, furter classifiable as

– build dependencies – compilers, linkers, test frameworks, etc. needed in the

build process, typically able to function non-intereactively and invoked through

some layer of automation, sometimes categorized further, for example into

native and non-native or into build and test dependencies, and

– other development tools – tools to work with software that are not needed in

the actual build process, more often manually-operated, like IDEs1 and their

plugins, debuggers, or linters.

1.1 Problem formulation

If either an external dependency suffers from contamination, the infrastruc-

ture handling the build is compromised, or the organization or individuals

attempt a sabotage, then a backdoor or other security vulnerability can be

implanted in the software being built. In a basic setting, each dependency,

the infrastructure, and the organization are all single points of failure. The

last two of these points can be secured through additional build outputs ver-

1Integrated Development Environments

2

ification that utilizes software reproducibility. This work aims at exploiting

reproducibility to secure software’s build process, with special focus on elim-

inating the gaps that would leave single points of failure.

A reproducible build is one that produces the same, bit-to-bit identical outputs when

repeated. For example, the resulting program executables are bit-to-bit identical. This

concept assumes that a set of build inputs with the same contents is used in every

repetition. E.g., program sources and dependencies in exact same versions are used. As

a consequence, one prerequisite of reproducibility is hermeticity – the quality of a build

process that depends exclusively on a set of predefined dependencies. A hermetic build

must not depend on changeable network resources nor on machine’s installed software

other than build’s formal inputs. Hermeticity is usually ensured by performing software

build inside a minimal, isolated environment, often a container utilizing Linux namespaces.

Multiparty verification of build’s reproducible output can help increase confidence that

built software is not contaminated due to compromise of infrastructure underpinning the

build environment nor malicious actions of infrastructure operators. The verification shall

be unsuccessful if the contamination is present in an output of one build and not in those

of the others. The overviews of successful and unsuccessful verification performed by end

user – a scheme that does not create unnecessary single points of failure – are presented

in Figures 1.2 and 1.3, respectively. Contamination is represented by a frowning face.

The extra confidence coming from verification can empower both software vendors willing

to reduce the risk of distributing compromised code and software consumers wanting to

secure their operations.

Single-party verification is also applicable if only the infrastructure threats are consid-

ered. Meanwhile, the party itself retains the ability to undetectably compromise software

builds, i.e., implant backdoors. Figure 1.4 depicts an occurrence of such compromise while

single-party verification of build’s reproducible output is taking place. Contamination is

represented by a frowning face.

In addition to the above, just as reproducible builds performed by a single organization

are insufficient to protect from contamination introduced deterministically by the organi-

zation, reproducible builds performed on a single infrastructure would be insufficient to

protect from contamination spreading deterministically from that infrastructure.

For software to be secured with reproducible builds, its build process has to gain the

3

build inputs party A
(the original distributor)

party B party C software consumer

people
«manage»

build environment

infrastructure

build

Build outputs do match,
the build was likely not
contaminated.

software
source code

build tools

libraries

people
«manage»

build environment

infrastructure

build

people
«manage»

build environment

infrastructure

build hash: e013f…

hash: e013f…

hash: e013f…

built program

Figure 1.2: Overview of a successful multiparty build verification process.

hash: cfd21…

Build outputs do not
match, the build was
possibly contaminated.

Contamination gets
introduced by deliberate
human action or spreads
from infrastructure.

build inputs party A
(the original distributor)

party B party C software consumer

people
«manage»

build environment

infrastructure

build

software
source code

build tools

libraries

people
«manage»

build environment

infrastructure

build

people
«manage»

build environment

infrastructure

build hash: e013f…

hash: e013f…

built program

Figure 1.3: Overview of an unsuccessful build verification process.

4

Build outputs do match,
contamination was not
detected.

Contamination gets
introduced by deliberate
human action during
every build.

build inputs software distributor; a single party, which rebuilds software on multiple infrastructures software consumer

build environment

build

infrastructure A

software
source code

build tools

libraries

build environment

build

build environment

build hash: 07ef5…

hash: 07ef5…

built program

people
«manage»

infrastructure B

infrastructure C

hash: 07ef5…

Figure 1.4: Overview of a build verification process which only compared the outputs of
builds performed by a single party and failed to detect malice.

quality of reproducibility, where repetition of the same build produces output without

variations. Achieving that quality can itself be challenging. This involves identification

of sources of build process’ nondeterminism – like timestamps and a changing order of

filenames in directory listings. Identified sources need to be removed, e.g., by use of fixed

date in timestamps or sorting of filenames obtained from directory scans. Achieving this

is nowadays easier because common sources of nondeterminism have already been inves-

tigated and workarounds have been implemented. For example, since version 7 the GNU

C Compiler checks for the existence of a SOURCE_DATE_EPOCH environment variable containing

a time value. It automatically uses this value in generated file timestamps [Lam+]. Addi-

tionally, dedicated tooling for investigating non-reproducibility issues has been developed,

notably the diffoscope program [LZ21]. To decrease the chance of contamination from a

compromized operating system, firmware, and hardware, the actual build – once its repro-

ducibility issues are resolved – should be performed on infrastructures that differ as much

as possible, except for the invariant set of build inputs and environment configuration

needed to ensure reproducibile outputs.

This work does not address the challenges of avoiding nondeterminism in software

builds. Instead, the work’s goal is to ensure that – in practical scenarios – the build

inputs remain invariant in all build repetition attempts. The work’s second major concern

is that all machine-performed operations – even those deemed preparatory – can have their

5

effect on build output controlled through reproducibility. All of this, in turn, can make

reproducible builds a more reliable and more complete security mechanism.

Despite their benefits, one should nevertheless realize that reproducible builds only

address a particular subset of software supply chain threats – ones affecting the build

process – and are mostly useful if other stages of that chain are also secured. Some of the

practices that can help with this are

1. making sure the software sources relied upon are audited against backdoors, at least

informally, e.g., by the virtue of being developed in the Bazaar model, where the

public has a high chance of noticing malicious changes [Ray01],

2. making sure the software sources do not get altered by any party after the verifica-

tion from the step above, and

3. using reproducible builds and other mechanisms to verify software’s dependencies,

possibly recursively.

One example of a threat not remediated through reproducible builds alone is the loud

XZ backdoor from 2024. Among others, it targeted Debian and Fedora software distribu-

tions. Backdoor’s activation code was only present in the official source release archives

and not in the source repository, which is most often looked at by programmers [Lin+24].

When the software was built from source archives, it had backdoor code linked in, but

build results were deterministic. Attacks in such form would not be possible if the source

archives were verified to correspond to version-controlled software sources.

6

2. Contemporary guidance and standards in the field

of software supply chain security

Threats related to software build and delivery process were known already long ago. One

interesting self-implanting compiler backdoor was described by Ken Thompson in his Tur-

ing Award lecture in 1984, “Reflections on Trusting Trust” [Tho84]. Later signs of interest

in supply chain threats in certain circles include for example David A. Wheeler’s PhD

dissertation titled “Fully Countering Trusting Trust through Diverse Double-Compiling”

[Whe09] and eventually Bitcoin’s use of Gitian deterministic builder1. Also, for many

years certain software distributions have been compiling their software from sources on

dedicated servers, in isolated environments with only mininum dependencies for a given

build. One example of such distribution is Debian.

At the same time, for a wide public it’s been a norm to rely on prebuilt software that

gives virtually no guarantees that it was built in a secure environment. Multiple software

repositories allow publishing developer-built software packages. Such software – built

from a valid VCS2 checkout but on developer’s infected machine – could be maliciously

modified and distributed to unaware software integrators wishing to utilize it in their

projects. Neither cryptographic signing of packages nor VCS source code audits would

mitigate such attacks.

Several spectacular supply chain attacks of recent years became the catalyst of work

towards increasing the level of security. In case of the SolarWinds attack from 2020,

also known under the name Sunburst, software distributed among reportedly more than

18000 customers turned out to contain a backdoor implanted after a compromise of

vendor’s infrastructure [SB21]. It was exactly the kind of threat that reproducible builds

address. As a result of the event, SolarWinds Corporation suffered great economic losses

and pejoration of its brand’s image. Additionally, the company exposed thousands of
1before replacing Gitian with GNU Guix in 2021
2version control system

Kraków, 2025

customers to cyberattacks leveraging its compromised software. All of this could have

been avoided through reproducible verification of software build outputs.

As more attacks on software build and distribution are reported, software supply chain

security becomes a hot topic. It attracts the attention of public institutions and private

organizations alike. Some prominent undertakings by nonprofits are: launch of OWASP’s3

SCVS4 in 2019, foundation of OpenSSF5 in 2020, launch of its SLSA6 framework in 2021,

Microsoft’s donation of S2C2F7 to OpenSSF in 2022, as well as the publishing of CNCF’s8

“Software Supply Chain Best Practices” in 2021. State actors also took voice by the means

of “Securing the Software Supply Chain: Recommended Practices for Developers” and

subsequent two guides from 2022 developed by the ESF9 partnership with support from

CISA10, the NSA11, and the Office of the Director of National Intelligence. Another

possibly relevant document is NSA’s “Recommendations for Software Bill of Materials

(SBOM) Management” from 2023.

2.1 Software Component Verification Standard

SCVS [Spr+20] describes itself as a “community-driven effort to establish a framework

for identifying activities, controls, and best practices, which can help in identifying and

reducing risk in a software supply chain”. Despite being developed by OWASP it is generic

and not limited to web applications in its scope. Authors recognize the unfeasibility of

applying all good practices and threat mitigations at every phase of every software project

and categorize their security requirements into three levels, each implying the previous

one and extending it.

Practices listed in SCVS are grouped into six topics and formulated briefly. They are

agnostic about the technology stack and data formats in use. At length explanation of

the importance of prescribed actions is not part of the document.

As of version 1.0 of the standard, level 2 requirements include a method to locate
3Open Worldwide Application Security Project
4Software Component Verification Standard
5Open Source Security Foundation
6Supply Chain Levels for Software Artifacts
7Secure Supply Chain Consumption Framework
8Cloud Native Computing Foundation, a project of Linux Foundation
9Enduring Security Framework

10Cybersecurity and Infrastructure Security Agency
11National Security Agency

8

“specific source codes in version control” that correspond to a given version of a third-

party package from software repository. While it is stated that the correspondence must be

verifiable, further details are not given. SBOM12 and repeatable build process are required

for an application being developed but not for third-party components. Additionally,

listed practices regarding the build environment mention neither the goal of reproducibility

nor the weaker hermeticity. While authors might have – justifiably – judged such rules as

unfeasible given the current state of the software ecosystem, it is interesting from the point

of view of this work. Threats that could not be addressed a few years ago in a generic

setting might be remediable now in the context of one or several technology stacks.

2.2 Supply Chain Levels for Software Artifacts

SLSA [Adr+25] uses similar but conceptually more complex categorization than SCVS.

Practices are going to be assigned to so-called “tracks” which correspond to different as-

pects of software supply chain security and which might use different numbers of security

levels. As of framwork version 1.0 there only exists a “Build” track with three levels,

not counting the empty zeroth level. In addition to the specification of requirements,

SLSA documents different threats grouped into those concerning the source, dependen-

cies, build, availability, and verification of an artifact. Historical examples of attacks

using some of these techniques are listed in the documentation. Finally, it also includes

instructions how to apply SLSA and how to use it with attestation formats from the

in-toto framework [Tor+19].

Many aspects of the build process are addressed in the specified requirements set

but the qualities of hermeticity and reproducibility were removed from the set at the

drafting stage. SLSA explicitly calls verified reproducible builds one of multiple methods

of implementing the requirements. In the context of the particular threat of compromised

infrastructure, framework’s focus is instead on stronger security controls for the build

platform. The platform, however, remains a single point of failure. Incidents like that of

SolarWinds could still occur. Reproducibility and hermeticity might be re-introduced in

subsequent revisions of SLSA, as explained on its “Future directions” page.

The specification currently also does not cover the recursive application of its require-

12software bill of materials

9

ments to input artifacts used. It is nonetheless suggested that users could apply SLSA

independently to transitive dependencies. This approach is presented as a possible miti-

gation to attacks like that performed on event-stream library in 2018.

2.3 Secure Supply Chain Consumption Framework

S2C2F [Dig+22] is complementary to SLSA in that it embraces software consumer’s point

of view. It introduces four “levels of maturity” of requirements with the highest level

mandating a consumer-performed rebuild of all artifacts. Having the artifact built repro-

ducibly by several third parties is mentioned as an alternative approach. Neither method

is presented as more secure, even though local rebuild still suffers from being a single

point of failure.

2.4 “Software Supply Chain Best Practices”

As of version 1, this paper [Veg+21] recognizes three categories of risk environments and

three categories of assurance requirements. These are – in both cases – “low”, “moderate”,

and “high”. A methodology for securing the software supply chain is presented in five

stages, with four themes of “Verification”, “Automation”, “Authorization in Controlled

Environments”, and “Secure Authentication” being repeated in them. Recommendations

are organized into paragraphs rather than tables or lists. Authors point towards existing

tools useful for some of the tasks, notably the in-toto framwork [Tor+19] and Rebuilderd

system [DHV]. At the same time, they openly admit that some of the practices they

describe might require extra effort to implement because certain challenges have not yet

been countered by the supply chain industry.

Reproducible builds are presented as potentially leverageable when high assurance

is needed. The topic is discussed in more detail than in the previous documents from

OWASP and OpenSSF. In addition, hermeticity is included as a recommendation for high-

risk and high-assurance environments. Recursive dependencies are treated with equal care

to the direct ones, consistently with authors’ statement that “a supply chain’s security is

defined by its weakest link”. The issue of bootstrapping a system image for builds is also

discussed in the paper.

10

2.5 “Securing the Software Supply Chain: Recom-

mended Practices Guide”

The series was developed by a public-private working group with members from both the

industry and U.S. government agencies. It is described as informational only and does

not define any standard. Subsequent parts are addressed at software developers, suppliers

– who are considered to be “liaising between the customer and software developer” – and

customers.

Although these series do not group recommendations into levels, two mitigations in the

first guide from August 2022 [NOC22] are called “advanced” and described as providing

“additional protection”. These are the hermetic and reproducible builds. A suggestion is

made that the same builds are performed “in both cloud and on-premise environments”

and their outputs compared. Additionally, authors state a justification should be required

when it is impossible to perform certain build reproducibly. The text of this requirement

has been copied verbatim from SLSA draft back before being removed there.

The guide also recommends that images used to deploy the build environment should

be created from sources except where “there is an understanding of the provenance and

trust of delivery”. No statements explicitly concerning rebuilds of transitive dependencies

of a product are made.

2.6 “Recommendations for SBOM Management”

The paper [NSA24] calls itself a guidance. It lists recommendations for general software

suppliers and consumers but also dedicates a big part to users and owners of NSS13.

Document’s primary focus is on functionalities that tools used to manage SBOMs should

provide.

NSA’s guidance concerns SBOMs, which hold information about software components

comprising final product. The guidance does not directly address build process threats

and does not touch the topics of reproducibility and transitive dependencies of software.

In fact, the industry recognizes another type of bill of materials, not mentioned in the

13U.S. national security systems – a specific category of information systems used on behalf of U.S.
agencies

11

document, which is more relevant to the topic of reproducibility than SBOM. It is manu-

facturing bill of materials. In the context of software, MBOM conveys information about

all components needed for its build. This also includes project’s build dependencies which

would not be recorded in an SBOM. MBOMs are relevant from reproducibility perspective

because information in them can make software rebuilds possible. Even though MBOMs

are not directly mentioned in version 1.1 of NSA’s guidance, one of the recommendations

present there is labeled as “Scalable architecture”. It is described as one that can also

“handle other types of BOMs”.

2.7 Summary

Published documents’ attitutes to reproducibility and hermeticity range from agnosticism

to suggestion and recommendation in the context of certain environments. Reproducibil-

ity and its requisite – hermeticity – are difficult to achieve with a great subset of existing

popular software projects. This difficulty might stand behind the limited focus on these

measures in documents other than CNCF’s “Software Supply Chain Best Practices”. It

appears that the means of securing the software supply chain which are more straightfor-

ward to employ are also more often recommended. In such case, making reproducibility

easier to achieve for all kinds of software projects should lead to it being more frequently

discussed and therefore more broadly leveraged.

12

3. Security tools leveraging reproducible builds

Several initiatives and pieces of software exist that are concerned with the verification of

reproducibility of software packages. The champion of these efforts is the Reproducible

Builds project, also affiliated with Debian.

3.1 in-toto apt-transport for Debian packages

in-toto framework, developed under the CNCF, aims to secure the integrity of software

supply chains [Tor+19]. Debian GNU/Linux is an operating system distribution founded

in 1993. It provides thousands of pieces of software in form of packages that can be

installed in the system via Debian’s package manager, APT1.

In 2018 it became possible to use in-toto together with Debian’s APT, to verify that

a package being installed has been verified through reproducible builds. The package

manager can be configured to abort installation if the package was not reproduced by

at least k independent rebuilders, with k configurable by the user. In the process, cryp-

tographically signed attestations of rebuilt packages are fetched over the network from

rebuilder URIs that are also configured by the user.

3.1.1 How a Debian package is made and rebuilt

Most packages available in Debian contain software written by third parties, i.e., the

upstream. That software was released in source form and subsequently integrated into

Debian. A package typically has a maintainer who is a Debian volunteer taking care of

the package, possibly with the aid of other people [Rod+22, Chapter 1].

Upon initial creation or a version update of a Debian package, its maintainer first

prepares what is called a source package. It is the primary input of the build process

1Advanced Package Tool

Kraków, 2025

that will produce the final, installable package. The installable package is also sometimes

called a binary package to distinguish it from the source package. A single build process

with a single source package can also prouce multiple binary packages. For example, a

programming library written in the C programming language can have its dynamically

linked binary and its header files placed in distinct binary packages. As of June 3rd,

2025, the current release of Debian – Debian 12, codenamed “Bookworm” – offered 63465

packages for x86_64 architecture, as found in its main pool. They were produced from

34217 source packages.

An official Debian source package typically consists of

1. software sources taken from the upstream – possibly with inappropriately licensed

components removed and other changes applied to meet Debian guidelines – taking

form of one or more compressed archives,

2. package’s recipe, taking form of a compressed archive, including, among others,

• a list of software’s build and runtime dependencies, placed – with other meta-

data – in a file named debian-control, with an example in Listing 3.1,

• optional patch files that describe Debian-specific changes which are to be ap-

plied to upstream software as part of the automated build process, with an

example in Listing 3.2, and

• a script directing the build process, placed in a file named debian/rules, invoked

as a Makefile, with an example in Listing 3.3, and

3. a text file with .dsc suffix containing cryptographically signed source package meta-

data, including hashes of compressed archives from the above points.

The package maintainer is likely to perform one or several builds when working on a

new or updated source package. However, except for special cases, it is only the source

package and not the maintainer-built binary packages that gets uploaded to what is called

the Debian archive. Uploaded source packages are “built automatically by the build

daemons in a controlled and predictable environment” [Lev+25, Chapter 5].

Besides producing binary packages, the build daemons also record the metadata of

performed builds, which is later published with cryptographic signatures as .buildinfo files2.
2which can be considered a type of MBOM that was described in 2.6

14

Source: nodejs
Section: javascript
Priority: optional
Maintainer: Debian Javascript Maintainers <pkg-javascript-devel@alioth-lists.debian.net>
Uploaders: Jérémy Lal <kapouer@melix.org>,
Jonas Smedegaard <dr@jones.dk>

Build-Depends:
sse2-support [i386] <!nocheck>,
armv6k-support [armel] <!nocheck>, vfpv2-support [armel] <!nocheck>,
debhelper-compat (= 13),
dh-buildinfo,
bash-completion,
dh-sequence-bash-completion,
ca-certificates,
curl <!nocheck>,
gyp (>= 0.16.0~),
jq,
libbrotli-dev,

[...]

Package: nodejs
Architecture: amd64 arm64 armel armhf i386 mips64el mips64r6el loong64 powerpc ppc64 ppc64el riscv64 s390x
Multi-Arch: allowed
Depends:
${shlibs:Depends},
${misc:Depends},
node-corepack <!pkg.nodejs.nobuiltin>,
sse2-support [i386],
armv6k-support [armel], vfpv2-support [armel],
libnode115 (= ${binary:Version})

Recommends: ca-certificates,
nodejs-doc

Suggests: npm
[...]

Listing 3.1: Excerpts from a 176-lines long debian/control file of the nodejs Debian package.

1 Description: fix rc path to allow build system run tests
2 Author: Joao Eriberto Mota Filho <eriberto@debian.org>
3 Last-Update: 2019-10-20
4 --- shc -4.0.3.orig/test/ttest.sh
5 +++ shc -4.0.3/test/ttest.sh
6 @@ -1,6 +1,6 @@
7 #!/bin/bash
8
9 -shells=('/bin/sh' '/bin/dash' '/bin/bash' '/bin/ash' '/bin/ksh' '/bin/zsh' '/usr/bin/tcsh' '/bin/csh' '/usr
 /bin/rc')

10 +shells=('/bin/sh' '/bin/dash' '/bin/bash' '/bin/ash' '/bin/ksh' '/bin/zsh' '/usr/bin/tcsh' '/bin/csh' '/bin
 /rc')

11 ## Install: sudo apt install dash bash ash ksh zsh tcsh csh rc
12
13 check_opts=('' '-r' '-v' '-D' '-S')

Listing 3.2: A patch used by Debian package shc to provide an upstream script with the
correct path of the rc executable, as present in Debian.

15

[...]

stamps/build.%: stamps/configure.%
$(checkdir)
@echo BEGIN $@
env BFD_SOVER_EXT="-$*" CTF_SOVER_EXT="-$*" \

$(call SET_BINUTILS_MULTIARCH_ENV ,$*) \
$(MAKE) -C builddir-$* $(NJOBS) \

CFLAGS="$(CFLAGS)" \
CXXFLAGS="$(CXXFLAGS)" \
LDFLAGS="$(LDFLAGS) -Wl,-z,relro"

ifeq ($(DEB_BUILD_GNU_TYPE),$(DEB_HOST_GNU_TYPE))
ifeq ($(with_check),yes)

-env MAKE="$(MAKE) VERSION=$(VERSION)-$*" \
$(call SET_BINUTILS_MULTIARCH_ENV ,$*) \

$(MAKE) -C builddir-$* -k check
rm -f $(pwd)/test-summary-$*
for f in \

builddir-$*/binutils/binutils.sum \
builddir-$*/gas/testsuite/gas.sum \
builddir-$*/ld/ld.sum \
builddir-$*/libctf/libctf.sum \
builddir-$*/gprofng/gprofng.sum \
builddir-$*/libsframe/libsframe.sum \

; do \
[...]

Listing 3.3: Excerpt from a 2045-lines long debian/rules Makefile of the binutils Debian
package.

For a given binary package, it is usually possible to locate and download its corresponding

.buildinfo file. That file contains, among others, a list of names and versions of Debian

packages that were installed in the minimal build environment. An example of a .buildinfo

file is shown in Listing 3.4.

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Format: 1.0
Source: haskell-base-compat-batteries
Binary: libghc-base-compat-batteries-dev libghc-base-compat-batteries-prof
Architecture: amd64
Version: 0.11.2-1
[...]
Checksums-Sha256:
db28e3a63a2306507c471693da3cd9a06609aabe8189712e7759ad7919e60b1f 82332 libghc-base-comp

at-batteries-dev_0.11.2-1_amd64.deb
f1a76638f3ce5f5584241363da07e01582b72837ade73ba0bdacf3bb221b366a 63004 libghc-base-comp

at-batteries-prof_0.11.2-1_amd64.deb
Build-Origin: Debian
Build-Architecture: amd64
Build-Date: Wed, 15 Jun 2022 00:46:44 +0000
Build-Path: /build/haskell-base-compat-batteries-rkofMw/haskell-base-compat-batteries -0.
11.2
Installed-Build-Depends:
autoconf (= 2.71-2),
automake (= 1:1.16.5-1.3),
autopoint (= 0.21-6),
autotools-dev (= 20220109.1),
base-files (= 12.2),

[...]

Listing 3.4: Excerpt from a 256-lines long .buildinfo file of the haskell-base-compat-batteries

Debian package.

16

The .buildinfo files can be used by parties other that The Debian Project to rebuild the

official packages, write in-toto metadata of the process, sign it, and subsequently serve it

to the users.

3.2 guix challenge command of GNU Guix

GNU Guix is an operating system distribution and a package manager that appeared in

2013 [Cou13]. It implements functional package management model described by Eelco

Dolstra in “The Purely Functional Software Deployment Model” in 2006 [Dol06] and pi-

oneered by Nix package manager. For avoidance of confusion with an unrelated “GUIX”

U.S. trademark registered in 2019 and owned by Microsoft, the GNU Guix package man-

ager shall be referred to with its “GNU” prefix throughout this document.

Similarly to Debian, GNU Guix relies on software written by upstream authors and

makes it available in the form of installable packages. However, the data formats, build

mechanisms, and nomenclature differ. The equivalent of Debian’s binary package is re-

ferred to as a substitute. Since 2015, GNU Guix provides a guix challenge command which

“allows users to challenge the authenticity of substitutes provided by a server” [Cou15].

End users can invoke this command to compare the outputs of package builds performed

on multiple infrastructures and report which packages were not built reproducibly – either

due to nondeterminism of the build process or because of build’s compromise.

3.2.1 How a GNU Guix package is made and built

GNU Guix package collection is determined by a set of package recipes. Unlike Debian

package recipes, these do not take the form of compressed achives. Here, packages are

defined in Scheme programming language from Lisp family. A recipe consists of code that

instantiates and populates a <package> data structure representing a package that can be

built. Recipe’s code can use the facilities of the Turing-complete Scheme programming

language to dynamically compute parts of this new <package> instance. A <package> instance

does – in most cases – get bound to a Scheme variable, which other recipes’ code can

reference. Lists of package’s explicit build and runtime dependencies are typically con-

structed using references to other package variables. A package recipe example is shown

in Listing 3.5. It defines a variable of the same name as the package and declares its

17

explicit dependencies by referencing python-protobuf and other two package variables. A

Scheme code snippet is supplied to be executed during the hermetic build process. It

customizes the process by deleting unnecessary files.

(define-public python-axolotl
(package

(name "python-axolotl")
(version "0.2.3")
(source
(origin

(method url-fetch)
(uri (pypi-uri "python-axolotl" version))
(sha256
(base32
"1bwdp24fmriffwx91aigs9k162albb51iskp23nc939z893q23py"))))

(build-system python-build-system)
(arguments
`(#:phases

(modify-phases %standard-phases
;; Don't install tests
(add-before 'install 'remove-tests

(lambda _
(for-each delete-file-recursively

'("axolotl/tests" "build/lib/axolotl/tests"))
#t)))))

(propagated-inputs
(list python-axolotl-curve25519 python-cryptography python-protobuf))

(home-page "https://github.com/tgalal/python-axolotl")
(synopsis "Python port of libaxolotl-android")
(description "This is a python port of libaxolotl-android. This

is a ratcheting forward secrecy protocol that works in synchronous and
asynchronous messaging environments.")

(license license:gpl3)))

Listing 3.5: Recipe of python-axolotl GNU Guix package.

The recipes of all official GNU Guix packages are kept and maintained in a single

VCS repository. As of April 14th, 2025, this is a repository that houses both the recipes

collection and the GNU Guix application, although this setup is not imposed by design

and might change in the future. Recipes in the repository can also have accompanying

patch files. However, patches are used less frequently here than in Debian package recipes.

Regular expression substitutions performed by Scheme code are preferred by GNU Guix

developers for trivial modifications of upstream source.

Package recipes in GNU Guix generally reference remote software sources using URLs

and hashes that are considered cryptographically secure. The hashes are used for verifi-

cation of sources’ integrity upon download and make it possible to safely download them

from fallback servers, among which is the archive of Software Heritage [Cou+24]. Several

remote resource formats are supported, including traditional compressed archives as well

as repositories of popular VCSes. Referencing VSC repositories of upstream projects –

although not practiced universally in the recipes collection – allows the correspondence

of build inputs to public-reviewed sources to be more easily tracked.

18

The GNU Guix package manager is able to build packages locally, on the system on

which their installation was requested. Each deployment of GNU Guix comes – by design

– with a copy of the recipes collection, such that only the source inputs – identified by

cryptographic hashes – need to be downloaded for a build to be performed. Local builds

are fully automated, are performed in isolated environments created in the background

and are a first-class citizen in the model of GNU Guix. For practical reasons, it is made

possible to instead download prebuilt packages – the substitutes that substitute their

locally-built equivalents.

The guix challenge command allows the build outputs advertised by configured substi-

tute servers to be compared with each other and with the outputs of local builds, when

available.

Lack of automatized integration of reproducibility verification with package deploy-

ment is a notable limitation of the guix challenge command of GNU Guix. The command

has to be invoked explicitly by the user. As of April 14th, 2025, there is no official way

to automatically challenge the binary substitutes that GNU Guix downloads as part of

other actions, such as software installation. Thus, in practice, the command is less easily

usable as an end user’s preventive security tool and more as an investigation and internal

verification aid.

Bitcoin Core, possibly the most famous piece of software using GNU Guix to repro-

ducibly verify its binaries, does not rely on the guix challenge command and instead uses

its own custom scripts to perform code signing.

3.3 Continuous tests

The tools presented so far allow the end users to verify binaries before they are put in

use. The user can first learn whether a set of software packages was rebuilt with bit-

to-bit identical results on independent infrastructure and can then make an informed

decision whether to install the packages. The benefit of this type of verification is that it

leaves no single point of failure, except for end user’s device. However, if the latter were

compromised in the first place, no software-based scheme would reliably remediate that.

This scenario is therefore out of scope of this work.

The drawback of this type of verification is that accidential non-reproducibility due to

19

an overlooked source of nondeterminism in the build process leads to verification failures,

as depicted in Figure 3.1. A lag of independent rebuilders can likewise make verification

impossible, as also shown in the figure. If reproducible builds are to be used as a preventive

security measure, any such failure would need to stop the end user from performing the

attempted software installation or update. Until the percentage of reproducibly buildable

software in distributions is close to 100% and enough resources are invested in independent

infrastructure performing continuous rebuilding, this problem can be prohibitive.

Timestamp gets included.

build inputs party A
(the original distributor)

party B party C software consumer

people
«manage»

build environment

infrastructure

build

software
source code

build tools

libraries

people
«manage»

build environment

infrastructure

build hash: 2fe31…

no result yet

built program

hash: 8c9bf…

Timestamp gets included.
people

«manage»

infrastructure

queued
for building

Results are inconclusive.

include
timestamps in
generated files

Figure 3.1: Overview of a verification process inconclusive due to rebuilder’s delay and
lack of determinism.

However, there are several projects where verification of reproducibility is performed

by someone else than the end user. Although this does not eliminate the single point

of failure from software installation process, such verification can still make supply chain

attacks harder. For example, if an organization performs internal tests of reproducibility

and analyzes their results, it is more likely to detect code contamination early on and

react to it.

As of June 3rd, 2025, the Reproducible Builds project performs continuous tests of

the reproducibility of

• files from coreboot, FreeBSD, NetBSD, and OpenWrt projects, as well as

• packages from Debian repositories, with package reproducibility statistics being

reported, as in Figure 3.2.

20

Figure 3.2: Reproducibility of Debian Bookworm packages over time, as presented on
Reproducible Builds’ continuous tests website.

As of June 3rd, 2025, 33214 source packages from Debian Bookworm were reported to

have been rebuilt reproducibly for the x86_64 architecture. That means approximately

97% reproducibility in the collection. The remaining packages either could not be built

on the Reproducible Builds infrastructure, with various possible reasons, or were built

with outputs differing on binary level.

The Reproducible Builds project also lists several others – including GNU Guix men-

tioned earlier and its predecessor NixOS – that monitor the reproducibility of their

files and/or repository packages without relying on the Reproducible Builds’ infrastruc-

ture [RBCT]. One notable undertaking in this category is the development of Rebuilderd

tool for reproducible rebuilds of packages from Arch Linux and recently other distri-

butions [DHV]. An application also exists that can consult a Rebuilderd instance to

automatically verify packages installed in user’s Arch Linux system [Lkcnt].

The continuous tests platform used by GNU Guix is capable of generating reproducibil-

ity reports, which are viewable on pages at https://data.guix.gnu.org. Part of such

report is shown in Figure 3.3. According to it, there were 39344 packages available for

the x86_64 architecture as of April 14th, 2025, GNU Guix Git commit 143faecec3. 35415

of them – approximately 90% – were rebuilt reproducibly, albeit with 2087 remaining

untested. Frequent package updates and builders’ lag are possible reasons for the large

number of untested packages. Out of all the successfully rebuilt GNU Guix packages,

21

https://data.guix.gnu.org

approximately 95% had outputs that were bit-to-bit identical with those produced on

another infrastructure.

Figure 3.3: Reproducibility of GNU Guix packages as reported by its continuous tests
platform.

Unfortunately, several of the reproducibility tests listed on the Reproducible Builds

website have become unmaintained. The testing for Fedora and Alpine operating system

distributions was disabled at some point. Although the reproducibility statistics of GNU

Guix packages are still delivered, their web pages sometimes cannot be viewed due to

timeouts, as also witnessed by Internet Archive’s Wayback Machine3.

3https://web.archive.org/web/20250625124729/https://data.guix.gnu.org/repository/1/b
ranch/master/latest-processed-revision/package-reproducibility

22

https://web.archive.org/web/20250625124729/https://data.guix.gnu.org/repository/1/branch/master/latest-processed-revision/package-reproducibility
https://web.archive.org/web/20250625124729/https://data.guix.gnu.org/repository/1/branch/master/latest-processed-revision/package-reproducibility

4. Applicability of reproducibility workflows to differ-

ent software ecosystems

Current reproducible software distributions, like GNU Guix and Debian, are system

software distributions – ones that contain a collection of packages that can form a

complete operating system. As such, a mixture of software technologies can be found in

them.

Certain programming languages and computing platforms form software ecosystems

centered around them, for instance, the ecosystem of the Python programming language

with CPython1 and PyPy being its most popular runtimes. These ecosystems evolve

their specific software package formats and workflows for building these packages. Many

popular ecosystems have their dedicated package repositories that usually serve as primary

distribution channels of software written for the ecosystem’s computing platform. Such

ecosystem-specific software repositories are often, although imprecisely, referred to as

language-specific repositories. They are typically open to the public for registration and

package creation. As such, they form environments of software with varying levels of

quality and significance.

Many ecosystem-specific repositories distribute software without all the metadata that

is necessary to automate rebuilding it. Moreover, if a project uses multiple packages

from such repository, it relies on security of each of the machines used by these packages’

developers for builds and uploads. A partial remedy – facility to publish packages together

with build provenance data cryptographically signed by a build service – was employed by

ecosystem-specific repositories npm Registry and PyPI2 in 2023 and 2024, respectively.

A dedicated build service – with the most popular ones being GitHub Actions and GitLab

CI/CD – can be considered better secured than an average developer’s computer, for

the benefit of packages that are confirmed to have been built there. In addition, build
1the most popular implementation of the Python programming language, written in C
2Python Package Index

Kraków, 2025

provenance data identifies the source repository used in the build. However, even when

secured, build service remains a single point of failure of the process. In addition, support

for only one or few selected build services – as offered by the npm Registry as of April

14th, 2025 – leads to vendor lock-in.

4.1 Degree of inclusion in Debian and GNU Guix

Software utilizing the respective computing platforms and distributed primarily through

an ecosystem-specific software repository might, at some point, also get included in a

system software distribution. However, so far it did not happen with certain popular

and strategic pieces of software. One example is Electron framework that is used, among

others, by Signal application and Visual Studio Code IDEs. As of April 14th, 2025, Elec-

tron is declared a development dependency by 4533 packages in the npm Registry. At

the same time, software distributions that test for package reproducibility usually lack

Electron and Electron-based applications, as do Debian and GNU Guix. Another soft-

ware distribution that tests for package reproducibility, NixOS, redistributes Electron’s

upstream binaries without actually building the software. In this case, the build itself is

not being verified through reproducibility.

Certain programming languages and computing platforms have seen more packaging

progress in system software distributions. Let us consider the PyPI, npm, and crates

ecosystems, which are centered around their respective repositories and technologies, as

shown in Table 4.1. For this work, repositories were chosen as a basis for distinguishing

the ecosystems. It is a feasible criterion, although not the only possible one. There are

overlaps of various sizes between different repositories, runtimes, and project management

tools. Also, in some cases a software package has formal of informal dependencies that

are not distributed through the reposotory that the package itself uses.

We shall compare the numbers of software projects from the chosen ecosystems that

are packaged in system software distributions described in detail in 3. The numbers

presented in Table 4.2 were estimated based on snapshots of package collections offered

by Debian Bookworm as of June 3rd, 2025 and GNU Guix as of April 14th, 2025, GNU

Guix Git commit 143faecec3.

A conclusion arises that for some reason npm packages are less likely to be packaged

24

Table 4.1: Considered software ecosystems.

PyPI npm crates

repository PyPI npm Registry crates.io

primary programming
languages

Python,
Cython

JavaScript,
TypeScript,
WASM

Rust

sample runtimes or
compilers

CPython,
PyPy

Node.js,
Deno,
Bun

rustc

sample project
management tools

setuptools,
Poetry,
Hatch

npm,
Yarn,
pnpm

Cargo

Table 4.2: Estimated numbers of Debian and GNU Guix packages corresponding to soft-
ware from considered ecosystems.

PyPI npm crates

GNU Guix packages 3699 55 3704

estimated as use counts of
which build-systems in
recipes

pyproject-build-system,
python-build-system

node-build-system cargo-build-system

Debian packages 5312 998 1424

estimated as counts of
source packages referencing
which debhelper package

dh-python dh-nodejs dh-cargo

when adhering to the rigor of existing software distributions that utilize hermetic and

reproducible builds. We can try to name the main causes and judge whether the difficulties

could be worked around without sacrificing security.

4.2 Dependency tree sizes

It can be noticed that on avarage, npm projects have more recursive dependencies than,

for example, Python projects [Boj20]. This means that packaging an end-user application

written in JavaScript3 typically requires more labor of bringing the intermediate packages

to the distribution – an issue that has been talked about in the GNU Guix community

for at least ten years [Lem15].

Large dependency trees can be partially caused by the JavaScript language historically

having a relatively modest standard library. While such design can bring some benefits,

3also referred to by its official name: ECMAScript

25

it might also lead to proliferation of small libraries that have overlapping functionality.

Independent, competing packages with similar purposes are then more likely to appear

together in a single dependency tree.

Creation of many small packages and eager use of dependencies for simple tasks –

all of which leads to larger dependency trees – can also be attributed to the culture of

developers working with the npm Registry [Abd+20].

4.3 Age of the ecosystem

The npm tool first appeared in 2010. The PyPI ecosystem is older, with its repository

being launched in 2002. It can therefore be argued that software from the latter has had

more time to be included in Debian and several other software distributions. However, this

is not sufficient to explain the lack of inclusion of npm packages in GNU Guix, which itself

came to existence in 2012. Additionally, the crates ecosystem, which came to existence in

2014, is younger than all of the previous repositories. Despite that, software from it has

larger presence in Debian an GNU Guix than software from the npm ecosystem.

4.4 Conflicting dependencies

System software distributions typically only allow a single version of a package to be

installed at any given time. This rule is sometimes relaxed in various ways. For example,

as of June 3rd, 2025, Debian Bookworm had distinct packages named gcc-12 and gcc-11.

Both of them provide the GNU C Compiler, albeit in different major versions. These

packages can be installed side-by-side. GNU Guix, on the other hand, has facilities

to create independent environments with different sets of packages in each. If multiple

versions of the same package reside in different environments, they do not cause a conflict.

There are also other nuances that provide some degree of flexibility.

Nonetheless, an application that requires multiple versions of a single dependency is

more difficult to include in such software distributions. This is a relative small issue

for, e.g., Python applications. Their runtime does not support simultaneous loading of

multiple versions of the same Python library in the first place. I.e., if it is possible to

install package’s dependencies from PyPI and use that package, it means there are no

26

conflicting dependencies. At the same time, npm and the Node.js runtime allow multiple

versions of the same library to appear in the dependency tree of a project.

4.4.1 Support in npm&Node.js

Let us consider the dependency tree recorded in package-lock.json file of the sigstore project

repository4. We shall look at the revision designated by Git commit 759e4d9f70 from Aug

5, 2024. Entries of interest are shown in Listing 4.1. A library identified as tslib appears

two times in the tree. There is a copy of version 2.6.3 and a copy of version 1.14.1.

This happened because a dependency, tsyringe, has a requirement on a version of tslib

that is at least 1.9.3 but lower than 2.0.0. Version 1.14.1 present in the tree satisfies

this requirement. Another dependency, pvtsutils, requires tslib in version that is at least

2.6.1 but lower than 3.0.0. Several other entries, omitted for clarity, have a different

requirement on tslib. All these are satisfied by version 2.6.3.

[...]
"node_modules/pvtsutils": {

"version": "1.3.5",
"license": "MIT",
"dependencies": {

"tslib": "^2.6.1"
}

},
[...]

"node_modules/tslib": {
"version": "2.6.3",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.3.tgz",
"integrity": "sha512-xNvxJEOUiWPGhUuUdQgAJPKOOJfGnIyKySOc09XkKsgdUV/3

 E2zvwZYdejjmRgPCgcym1juLH3226yA7sEFJKQ=="
},
"node_modules/tsyringe": {

"version": "4.8.0",
"license": "MIT",
"dependencies": {

"tslib": "^1.9.3"
},
"engines": {

"node": ">= 6.0.0"
}

},
"node_modules/tsyringe/node_modules/tslib": {

"version": "1.14.1",
"license": "0BSD"

},
[...]

Listing 4.1: Multiple occurances of tslib package in a dependency tree.

When this project’s code is run and the tsyringe library tries to load tslib, Node.js

runtime instantiates version 1.14.1 of tslib from tsyringe’s private subtree. tsyringe then
4https://raw.githubusercontent.com/sigstore/sigstore-js/759e4d9f706aa0bea883267009fa

1da8f2705eab/package-lock.json

27

https://raw.githubusercontent.com/sigstore/sigstore-js/759e4d9f706aa0bea883267009fa1da8f2705eab/package-lock.json
https://raw.githubusercontent.com/sigstore/sigstore-js/759e4d9f706aa0bea883267009fa1da8f2705eab/package-lock.json

works with that instance of tslib. For all other parts of the project that attempt to load

tslib, version 2.6.3 is instantiated and used.

4.4.2 Effects of Semantic Versioning

In the npm ecosystem a system called “Semantic Versioning” [Pre13] is widely applied.

This system assumes that software version is given as three numbers – major, minor, and

patch. E.g., 2.6.3. It also permits optional labels for pre-release and build metadata.

When Semantic Versioning is followed, then a new software release that breaks backward

compatibility with the previous release has its major version number increased and the

other two numbers reset to zero. A release that adds new functionality without breaking

backward compatibility has only its minor number increased, with patch number reset to

zero. And a release that adds no new functionality – typically a bugfix release – has its

patch number increased.

Assume project foo utilizes a semantically versioned dependency bar. The developers

could verify that foo’s code integrates properly with a particular version of bar, e.g., version

3.4.5. The developers would then record a requirement that in the future, either this

version of bar or a later one – but without compatibility-breaking changes – can be used

by foo. This means only bar versions between 3.4.5 and 4.0.0, excluding 4.0.0 itself, would

satisfy the requirement. If bar then increases its major number in a new release, the

developers of foo can ensure that its code integrates properly with the newer bar. They

would then update the requirements in foo and the next release of foo could officially use

the 4.x.x series of bar. It would, however, still be forbidden from using the hypothetical

5.x.x series that could bring subsequent compatibility breakages.

In our example from 4.4.1, the libraries tsyringe and pvtsutils both apply this approach

to their dependency, tslib. As a result, tsyringe is protected from possible breaking changes

introduced by version 2.0.0 of tslib, but at the same time it is impossible to satisfy all

requirements of the project with just a single copy of tslib. In practice, there are sometimes

tens or hundreds such conflicts in a single dependency tree.

The breaking changes that necessitate increasing package’s major version number

sometimes concern a part of package’s functionality that the specific user does not rely

upon. When project’s developers know or suspect that the requirements specified by

certain dependencies could be safely loosened, they can forcibly override them. Such

28

overrides, supported natively in npm, are used by some when addressing security vul-

nerabilities deep in a project’s dependency tree. The same approach could be used to

eliminate all dependency conflicts. However, with many overrides there’s a lower chance

of avoiding a breakage due to inter-package compatibility issues.

4.5 Difficult bootstrappability

GNU Guix and Debian are self-contained in the sense that build dependencies of their

packages are also their packages. When packaging a program that requires, e.g., a C

compiler to build, no problems arise – C compilers are already present in these system

software distributions and one of them can be used as a build dependency of the new

package. However, packaging a program written in a new programming language requires

a compiler or interpreter of that programming language to be present in the distribution

in the first place. The same applies to other types of build tools, e.g., bundlers that

amalgamate many JavaScript files into a few or a single file.

Packaging a program for such distribution involves first packaging all its build tools.

Making a package buildable with only the tools from the distribution is sometimes referred

to as bootstrapping.

4.5.1 Self-depending software

Certain tools exist that depend on themselves to build, making bootstrapping challenging.

Selected examples from the npm ecosystem are presented in Table 4.3. Packages in the

table were ranked based on how many other npm Registry packages specified them as

development dependencies as of April 14th, 2025. The presented selection is by no means

exhaustive, more highly popular self-depending npm packages might exist.

In GNU Guix, the preferred approach to packaging a self-depending tool is making it

bootstrappable [Cou22]. This can happen by packaging a chain of historical versions of the

tool, where each can be built with the nearest older packaged one, down to an early version

that did not have a self-dependency. Sometimes it is possible to eliminate or shorten such

“bootstrap chain”, for example by replacing a complex build tool with scripts or by using

a bootstrappable drop-in replacement to some tool. The latter was an approach used to

package the official, self-hosting implementation of the Rust programming language for

29

Table 4.3: npm Registry packages that require themselves to build.

name popularity ranking notes

typescript 1 (473235 dependees) the original implementation of TypeScript programming
language

@babel/core 10 (138704 dependees) part of a JavaScript compiler, requring itself indirectly
through dependencies that themselves build with
@babel/core

rollup 26 (95965 dependees) a bundler

gulp 40 (61077 dependees) a build system, requiring itself through its runtime
dependency gulp-cli

sucrase 1793 (528 dependees) an alternative to Babel, used as a proof of concept for
bootstrapping a GNU Guix package

GNU Guix in 2018. There, an unofficial Rust compiler, written in C++, was used to

compile an official Rust release from July 2017 [Mil18].

Bootstrapping helps prevent the “Trusting Trust” attack demonstrated by Ken Thomp-

son in 1984, but as of today there is little evidence of such attack type ever being used by

threat actors. In some cases software distributions under consideration make exceptions

and allow a non-bootstrappable program prebuilt by another party to be made into a

distribution package. For example, the set of OCaml and Haskell compilers in GNU Guix

depends on such third party binaries that cannot be rebuilt from any package recipe in

the distribution.

In 2022 a proof of concept GNU Guix bootstrap of sucrase, a self-depending build tool

from the npm ecosystem, was done [zam22].

4.5.2 Recursive dependency closure

By package’s recursive development dependency closure we mean a set containing all its

declared runtime dependencies and development dependencies, their runtime dependen-

cies and development dependencies, etc. In other words, the closure is the minimal set

that contains the dependencies of its every member and also of the package for which

the closure is being computed. The size of package’s recursive dependency closure can

illustrate the bootstrapping challenge complexity. An attempt to compute such closure

was made for npm package typescript as part of this work. npm Registry metadata limited

to package releases from before April 14th, 2025 was used. For simplicity, version con-

straints were disregarded and packages’ all historical dependencies were considered. The

30

result was a 60843-elements big set of package names, with additional 2433 referenced

names that do not exists in the Registry. These were largely the results of mistakes and

possibly private/unpublished packages. Of course, non-crucial tools like linters tend to

be declared developments dependencies and the closure of truly necessary dependencies

would be much smaller, as also reported in 8.4. Nonetheless, this example shows how

difficult it is to reason about what is needed for bootstrapping tasks.

4.6 Inconvenience of system software distributions

Despite looser security practices and more frequent reports of malicious packages in repos-

itories like the npm Registry [Nic22; Mun23; Nap25; Tou25; Lak25], many developers still

prefer to work with them rather than with system software distributions. Packages in

the latter are adjusted to work with and inside their distributions and are typically not

compatible with the usual workflow of developers of, e.g., npm projects. For example, it

could be unstraightforward to use npm libraries from Debian for producing distribution

files of a mobile application. Another deterrent is the delay with which newer releases of

packages reach system software distributions.

This limited interest in availability of software from certain ecosystems in distribu-

tions like Debian and GNU Guix also leads to decreased incentive for authors of these

distributions to work on it.

31

5. Overview of the npm ecosystem

Software from the npm ecosystem was found to be more challenging to be made into

system software distribution packages. To provide deeper insight into this problem, this

chapter provides more information about this ecosystem, with focus on dependency rela-

tions between npm packages.

npm Registry – the software repository around which the npm ecosystem is centered –

was created as a distribution channel for JavaScript libraries, frameworks, and applications

using Node.js runtime. It was targeted towards server-side developers. The platform

allows the general public to register accounts and publish software packages. Throughout

the years, the npm Registry also became home to client-side JavaScript, i.e., software to be

executed in web browsers. The repository is nowadays also used by related programming

languages, notably TypeScript. As of April 14th, 2025, the repository was serving over

3.5 million published packages, many of which come in multiple versions.

5.1 Recognized dependency types

Projects using npm can use a structured format to list their dependencies, i.e., the npm

packages they use. Four types of dependencies can be specified in package’s metadata

kept in a file named package.json in project’s source directory. These types are described in

Table 5.1. Throughout the rest of this work, the opposite of a dependency shall be called

a dependee.

5.2 Statistical analysis of the npm ecosystem

To determine which projects using npm Registry are the most popular among develop-

ers, the dependency relations between packages were counted and analyzed. First, the

metadata of all published packages in JSON format was downloaded. Download took

Kraków, 2025

Table 5.1: Dependency types recognized by npm.

Metadata key Meaning

dependencies Packages needed at runtime.

devDependencies Packages needed or useful for development, often minifiers/bundlers,
test frameworks, linters, and version control integration tools.

optionalDependencies Similar to dependencies but only needed for some additional
functionality. npm supports installing a package without its optional
dependencies, but by default it does install them.

peerDependencies Used to specify compatible versions of tools for which the dependee
is a plugin.

place on the days following April 14th, 2025. The metadata was processed to only in-

clude information about releases made after April 14th, 2025, yielding 3519767 pack-

age entries. Curl program was used to make requests to Registry’s CouchDB view at

https://replicate.npmjs.com/_all_docs. It is worth noting that this API endpoint’s

functionality has since changed and other means would be necessary to download the

entire Registry metadata again in the future.

For the purpose of rankings discussed next, the dependees being multiple versions

of a single package were counted as one. Similiarly, version constraints in dependency

specifications were ignored.

5.2.1 The most popular dependencies – changes over five years

One of several metrics of package’s popularity is its number of public dependees. Up to

2019 such a ranking of 1000 packages most often specified as others’ dependencies used

to be published by Andrei Kashcha [Kas19]. A similar list computed from newer data

for the purpose of this work was used to check how much the set of the most popular

packages changed between August 2019 and April 2025. The goal was to find out how

many of the previously popular projects keep to be chosen by developers and how many

stopped being actively used, perhaps becoming legacy software. The overlap between the

rankings is visualised in Figure 5.1. For each natural n in the range [1,1000], n most

popular dependencies from both rankings were selected. The overlap of selected packages

from first and second ranking was computed and plotted with the values of n on the X

axis of the figure.

The “winners” in 2019 and 2025 were lodash and react with 69147 and 263038 de-

pendees, repsectively. It can be seen that about 150 most depended packages form a

33

https://replicate.npmjs.com/_all_docs

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

C
o
m

m
o
n
 p

a
ck

a
g
e
s

[%
]

Number analyzed packages having the most dependees

Figure 5.1: Overlap of the most popular npm dependencies from 2019 and 2025.

relatively stable forefront, with further part of the ranking having changed more over five

years. Nevertheless, it is worth noting that certain packages with no new releases for

several years still rank relatively high in 2025. Examples are lodash, request, and q ranking

third, 17th, and 157th, respectively.

As a conclusion, if certain software is intended to be used for more than a few years,

dependencies for it must be considered more carefully when they are not from among

the �150 most popular ones. Otherwise, the risk of project’s direct dependency becoming

legacy software grows. However, often other characteristics of a package will determine

whether it should be considered reliable. Ultimately, the matter of who maintains a

package and how it could help the project are more relevant than a ranking position.

5.2.2 The most popular dependencies – popularity tresholds

The numbers of dependees corresponding to ranking positions can be used to infer some

qualities of the ecosystem. This correspondence is presented in Figure 5.2.

In 2019, the 1000th most popular dependency package in the npm Registry had 346

dependees. By April 2025, the 1000th package in the ranking had already 4771 dependees.

This reflects the growth of the entire ecosystem, whose package repository had about one

million packages in July 2019 and about 3.5 million packages in April 2025. However,

this would by itself only explain a rise in dependee counts by about a ratio of 3.5. The

34

346

1000

4771

10000

30000

69147
100000

263038

0 100 200 300 400 500 600 700 800 900 1000

2025 ranking

2019 ranking

U
se

s
co

u
n
t

Top npm dependencies ranking position

Figure 5.2: Number of packages using the most popular dependencies.

aforementioned increase from 346 to 4771 dependees is over four times greater. This

needs to be attributed to growing projects’ complexity, as there is a tendency to use

more dependencies. A plausible additional explanation is higher overlap of functionalities

between packages, i.e., situations occur where multiple popular libraries exist for a single

task.

5.3 The most popular development dependencies

In the context of supply chain security, the development dependencies are as important to

research as the runtime dependencies. A popularity ranking similar to the previous one

was compiled for packages occuring the most in the devDependencies collections of others. An

analogous correspondence of ranking position to development dependee count is presented

in Figure 5.3. No development dependencies ranking from 2019 was found that could be

used for comparison. Instead, the runtime dependencies plot from Figure 5.2 was re-

included for easier reference.

The first position belongs to typescript with 840161 development dependees. A treshold

of 2185 development dependees needed to be reached by a package to be included in the

ranking. The curve for development dependencies is steeper, meaning there is a clearer

forefront. This in turn indicates that the functionality overlap mentioned in 5.2.2 is

possibly a smaller problem in this case.

35

2185
3000

10000

30000

100000

263038

840161

0 100 200 300 400 500 600 700 800 900 1000

development dependencies

runtime dependencies

U
se

s
co

u
n
t

Top npm dependencies ranking position

Figure 5.3: Number of packages using the most popular development dependencies.

5.4 Overlap of the most popular runtime and devel-

opment dependencies

It is possible for a popular development dependency to also be specified as a runtime

dependency by some packages. Realizing how often this happens can help judge whether

certain kinds of issues are likely to occur in the ecosystem. The overlap of runtime and

development dependencies is visualized in Figure 5.4, using the same approach as for the

overlap in Figure 5.1 discussed in 5.2.1.

Since packages listed as dependencies are often libraries or frameworks and those listed

as devDependensies are commonly applications, one could expect a smaller overlap than that

of about 15-30% which was found. A possible explanation is that unlisting a package

from devDependencies add instead including it among dependencies creates no major change for

project developers. A command like npm install shall still resolve that dependency and

include it in the environment it creates. It is therefore possible that a non-negligible

number of dependencies is incorrectly categorized by the dependees.

It used to be a known fact that among packages listed as devDependencies there are

many which are not needed to merely rebuild a project. These could be automatic code

formatters, tools responsible for integration with version control, etc. and they could be

eliminated from automated builds to make them lighter on resources and to decrease the

36

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

C
o
m

m
o
n
 p

a
ck

a
g
e
s

[%
]

Number of the most (dev)depended packages analyzed

Figure 5.4: Overlap of the most popular npm runtime and development dependencies in
2025.

attack surface. Based on these results it is reasonable to expect that the similar holds for

runtime dependencies. This provides a justification for experiments aimed at eliminating

the extraneous dependencies without breaking the functionality of packages.

37

6. Possible paradigms for hermeticity and reproducibil-

ity

Certain popular software technologies – with npm being one of them – prove difficult

to combine with existing reproducibility-focused workflows. Possible causes of this were

discussed in 4. The package creation workflows of – largely reproducible – system software

distributions Debian and GNU Guix were explained in 3.1.1 and 3.2.1, respectively. An

explanation of the npm ecosystem followed in 5.

With all the above being considered, the ability to handle software with numerous

dependencies – which can have complex relatonships – appears relevant to the goal of

rebuilding parts of the npm ecosystem hermetically and reproducibly. Based on the

knowledge gathered, possible approaches to hermeticity and reproducibility in the context

of dependency resolution shall be critically analyzed. They shall be classified as distinct

paradigms. The introduced paradigms shall be discussed in the context of security and

their applicability to the build process of npm pacakges.

Paradigms 0 through 2 represent existing approaches. Paradigm 3 is an intermediate

one that leads to 4, which is a generalization of the former. Paradigms 3 and 4 are an

innovation originating from this work. They are meant to optimize the way build inputs

are determined and also ensure that no unnecessary single points of failure are created

which would not be secured through verified reproducibility. The new paradigms are

suggested as bases for hypothetical new software packaging workflows that would make

hermeticity and reproducibility easier to achieve with software from, among others, the

npm ecosystem.

Kraków, 2025

6.1 Paradigm 0 – lack of actual reproducibility

If one is to build an npm package in the most basic way, with use of commands like

npm install and without a pre-computed dependency tree, then network connectivity is

necessary. Without it, the npm tool cannot download packages metadata from its reposi-

tory, the npm Registry. But if network access is allowed, then the build – and therefore its

result – might depend on downloaded code and data other than dependencies’ metadata.

Some commonly used npm packages require additional connections to function. For ex-

ample, the playwright-webkit library, upon installation by npm, downloads executables from

a third party server. That library is an intermediate test dependency of a popular web

library, JQuery, used by about 74% of the most popular websites [W3JL].

Author of an npm package can assign so-called distribution tags to its specific

versions. The tag can be though of as a string label that points to a package version.

Tags can be used by dependees as an alternative way of specifying the depended version

of the package. Some of the commonly used tag names are next, beta, and latest. When the

developer publishes a new package version, the npm tool by default automatically assigns

the latest tag to that version.

The build process of an npm project relies on downloaded metadata of packages. As a

result, if a dependency author publishes its new version or alters the distribution tags, it

might cause later rebuilds of the package to use a different set of inputs. The final result

can be different, so it is not reproducible. Additionally, the repository constitutes a single

point of failure because compromising the repository allows altering the served metadata

of package versions. The compromised repository could, for example, spoof package’s

distribution tags or hide the existence of certain versions of a package, thus allowing only

vulnerable versions to be used.

With files coming from a third party server, we have even less guarantee that they were

not maliciously tampered with. A library that downloads such files during package build

could verify them. For example, its authors could make the library contain cryptographic

hashes of the required external files. The library could then check that every downloaded

file has a matching hash. Unfortunately, we have no mechanisms to mandate that this

kind of verification takes place in cases like that of playwright-webkit. This means ad-hoc file

downloads are a bad security practice. They would need to be eliminated or restricted

39

for reproducibility to be leveraged.

Despite the above, reproducibility tests of npm packages are actually attempted, with

one example being Pronnoy Goswami’s research [Gos20]. It has to be noted that the

results of such tests are likely to be unstable, yielding different results if repeated at a

later date.

6.2 Paradigm 1 – inputs determined by human-maintained

references

One of the possible methods of determining the set of build inputs is used by GNU Guix.

Its package recipes contain references to dependency packages that have their versions

predetermined. As a result, questions like “Should foo use its dependency bar in version

2.4.5 or 3.0.1?” are already answered. An update to a package definition results in the

updated package being used everywhere that particular definition was referenced. The

update takes form of a commit or commit series in the Git VCS and is subject to review

by co-authors of the distribution.

If we fix a GNU Guix revision to be used, then in a package build – which is hermetic

by design – all inputs are unambigiously determined. No repository of metadata can open

the user to the risk of using incorrect dependency versions. In other words: the threat on

the part of improperly defined dependency versions is of the same nature as that on the

part of improperly written code. And – as users of any kind of software – we are deemed

to accept threats of this nature.

Maintenance of this kind of system is, of course, more labor-intensive. Every alteration

of a package recipe – also including software’s version updates – is an update to GNU

Guix’ Git repository. Such update involves labor of distribution maintainers, similarly to

Debian’s case. A sample list of 26 consecutive commits to GNU Guix’ repository – with

15 package updates among them – is presented in Listing 6.1. The changes in the list were

made by multiple contributors during an hour between 12:00 and 13:00 on April 11, 2025.

The changes are listed oldest to newets. Details of the newest one are additionally shown.

A non-negligible amount of work is clearly needed to handle many changes manually.

The great number of small changes might therefore lead to a yet unverified assumption

that too big effort is required of distribution maintainers. If true, this could hamper the

40

growth of the software collection available through GNU Guix.

ff5181e27e * daemon: Do not make chroot root directory read-only.
661bfd5459 * gnu: Remove duplicated package show-me-the-key.
1300d15763 * gnu: emacs-fj: Update to 0.6.
80cda80489 * man-db: Parse man macro arguments better.
c705d6e035 * man-db: Support mdoc-formatted man pages.
d1a1d7f2f7 * gnu: Add julia-simpletropical.
772b70455d * gnu: cgit: Update to 1.2.3-9.994d3fe.
c2f2dd1bf8 * gnu: guix-build-coordinator: Update to 0-128.7a253d1.
2d17db72d8 * gnu: font-go: Update to 2.010.
6fc5fb97cb * gnu: font-adobe-source-sans-pro: Update to 3.052.
fff4c6462f * gnu: font-arapey: Add revision number.
7dc2151550 * gnu: font-carlito: Update to 0.0.0-1.3a810ca.
5cdfd3d81f * gnu: azimuth: Update to 1.0.3-0.050f838.
70aa3b9c2f * gnu: font-adobe-source-han-sans: Update to 2.004.
198fe8bcdf * gnu: emacs-vundo: Update to 2.4.0.
0c7ffaacd2 * gnu: emacs-parsebib: Update to 6.7.
a775db2460 * gnu: emacs-jinx: Update to 2.1.
33c3ee5985 * gnu: emacs-julia-mode: Update to 1.0.2-0.7fc071e.
172e9a1aa1 * gnu: emacs-magit: Simplify package.
d262248c55 * gnu: localed: Remove trailing #t and re-indent.
383f7f5c89 * gnu: localed: Modernize.
41c40bc1cf * gnu: localed: Update to 257.4.
098b5cdf9c * gnu: elogind: Update to 255.17.
c17c6b9820 * services/base: Remove extraneous UDEV_CONFIG_FILE environment variable.
dedeb90501 * gnu: eudev: Build with udevrulesdir pointing to /etc/udev/rules.d.
744e973de3 * gnu: samba/pinned: Update to 4.18.1.
1 file changed, 2 insertions(+), 2 deletions(-)
gnu/packages/samba.scm | 4 ++--

modified gnu/packages/samba.scm
@@ -177,7 +177,7 @@ (define-public samba/pinned

(hidden-package
(package

(name "samba")
- (version "4.17.0")
+ (version "4.18.1")

(source
;; For updaters: the current PGP fingerprint is
;; 81F5E2832BD2545A1897B713AA99442FB680B620.

@@ -186,7 +186,7 @@ (define-public samba/pinned
(uri (string-append "https://download.samba.org/pub/samba/stable/"

"samba-" version ".tar.gz"))
(sha256

- (base32 "0fl2y5avmyxjadh6zz0fwz35akd6c4j9lldzp2kyvjrgm36qx1h4"))))
+ (base32 "03ncp49pfpzjla205y3xpb9iy61dz4pryyrvyz26422a4hpsmpnf"))))

(build-system gnu-build-system)
(arguments
(list

Listing 6.1: List of consecutive changes committed to GNU Guix, with contents of the
bottommost one included for reference.

In addition, many package managers following other paradigms can make use of per-

mitted dependency version ranges declared by packages. This way npm, APT, and others

can automatically avoid using incompatible dependency versions. However, Paradigm 1

does not allow such optimization to be employed.

It is worth highlighting that in GNU Guix the URLs and hashes that comprise iden-

tification data of program sources are maintained together with package recipes, as can

be seen in Listing 6.1. As explained, this approach might have additional consequences

in the amount of distribution maintainers’ labor. Nonetheless, it can also positively or

41

negatively affect the chances of malicious sources being referenced in a recipe. This is

an important supply chain issue to recognize, but it is independent from the concept of

paradigms introduced in this chapter.

6.3 Paradigm 2 – reproducibility not applied to de-

pendency resolution

The problem of the dependency resolution process being unreproducible was explained

in 6.1. In this context, the actual package build can be partitioned into several distinct

steps, for example

1. dependency resolution,

2. dependency installation,

3. code transformation/generation,

4. automated tests, and

5. installation/packing.

Steps 1 and 2 are sometimes performed together, for example as part of a single

command invocation. However, in case of some package managers – including npm – the

set of resolved dependencies with their versions can also be recorded for later reuse. It is

done with so-called lockfile – a file that project developers can add to a VCS and which

allows dependency installation to be repeated without re-downloading metadata nor re-

running the resolution algorithm. In npm projects this file is saved as package-lock.json or

npm-shrinkwrap.json.

With a precomputed package-lock.json we can therefore download the dependencies and

use them as inputs of the hermetized build, narrowed to steps 2-5. Upstream software’s

original build procedures sporadically expect network access during these steps. The

build process of the aforementioned JQuery is one of those few cases where this occurs.

Such problems would need to be corrected manually, in package recipes of a hypothetical

distribution applying Paradigm 2 to a broader population of npm packages. A typical

solution in, e.g., Debian is a patch that eliminates such access attempt or replaces it with

a reference to a local, formally-approved input.

42

If npm project authors fail to provide an appropriate lockfile – which can happen – it

could be generated by one of the parties that rebuild the software. Step 1 would then need

to be performed unhermetically, with network access. The obtained package-lock.json would

then be treated as additional build metadata, distributed to the other parties. When a

build were to be repeated to verify the reproducibiliy of the result or for other purposes,

presence of this metadata would be required.

The benefit of Paradigm 2 is that one can proceed in achieving reproducibility of

most of the build process and further leverage it. In fact, comments in the source code

of JQuery indicate that its developers – to some extent and with disregard for possible

changes in files being downloaded during the build process – did actually work on making

JQuery’s build process deterministic when the package-lock.json is used.

The main disadvantage of Paradigm 2 is that dependency resolution is still not secured

by hermeticity nor reproducibility. Even when changes to project’s package-lock.json take

the form of version control system commits, these are unlikely to be reviewed as carefully

as ordinary software code changes. Dependency trees can be complex. package-lock.json files

counting over 1000 entries are common. As a result, the shape of a particular resolved

dependency tree is difficult to explain without additional tools.

The described approach requires generalization to building a project that uses multiple

repositories, e.g., npm Registry + Python Package Index + Rust Package Registry. That

is because multiple dependency trees from multiple software ecosystems are involved.

Theoretically, even in terms of a single ecosystem and a single repository, we might need

to resolve multiple sets of dependencies in step 1. In effect, an actual collection of lockfiles

would need to be treated as the aforementioned additional build metadata.

6.3.1 Debian implementation

Interestingly, a variant of Paradigm 2 can be found in Debian, which is considered one of

the most reproducible software distributions. That is because the package recipe shared

as debian.tar.xz file contains the names of direct build dependencies but not necessarily

their precise versions nor the indirect dependency names. It is actually the .buildinfo files

where the published packages’ build environments metadata can be found. Much of this

metadata is determined by the dependency resolution process, as performed by Debian’s

APT tool during the initial Debian package build.

43

Although this does formally fall into the scope of Paradigm 2, Debian packagers’

perspective is still similar to that of Paradigm 1 users. That is because – as explained

in 4.4 – a single Debian release typically only advertises a single version of a given package

at any point in time. Unless multiple Debian releases are mixed together, this makes

the input metadata of APT’s dependency resolution process flat. This, in turn, makes

packagers ultimately responsible for ensuring version compatibility between packages in

this flat space.

6.4 Paradigm 3 – deterministic dependency resolu-

tion inputs ensured

For our dependency trees from Paradigm 2’s step 1 to be secured through reproducibility,

we need to be able to repeat the dependency resolution step using the same data about

candidate dependency packages. Neither .buildinfo nor package-lock.json files preserve all

metadata actually consulted by the resolution algorithm. They lack information about

packages that were considered but rejected as final dependency tree members. As such,

full dependency resolution cannot be performed based on just these files’ contents. It can

be argued that the risks this causes for Debian are small because the general public cannot

create new packages that could then be immediately used as dependencies. Here, one of

the most likely dependency resolution attack scenarios involves supplying the build with

an outdated, faulty compiler package already present in the distribution. One theoretical

attack utilizing a compiler bug was described in [BCR15]. In contrast, manipulation of

package-lock.json in an npm package build can more easily lead to an attacker-published

package being installed in the build environment.

In case of npm projects, one of the simplest solutions would be pointing the npm tool

to a local mock of a repository server, speaking the HTTP protocol. The mock would

function as a proxy that downloads required packages’ metadata from the original npm

Registry server, alters it and returns it as responses to the npm tool’s requests. Each

response – containing the metadata of all versions of a single npm package – would be

filtered not to include the versions of packages that were published after a chosen time

treshold. The treshold could be, e.g., the release date of the project version being built.

In repeated build attempts, the relevant metadata served by mocked registry ought not

44

to change. Corner cases shall occur, in form of dependencies being removed from the

official registry due to copyright claims or in form of projects’ dependence on particular

developer-alterable distribution tags of npm packages. These problems should be rare

enough to be fixable manually or with reasonable defaults. For example, a mock latest tag

could be attached to the newest version of each npm package whose metadata is served.

This approach does not completely eliminate the threat of the dependency resolution

process being maliciously influenced. In particular, the packages’ metadata could be mali-

ciously modified even earlier, for example as a result of the official registry’s infrastructure

being compromised. However, compared to Paradigm 2, the number of moments when

malicious modifications could occur is decreased. Similarly, the scope of what could be

modified is more limited. To decrease the changes of the hypothetized attack on the reg-

istry being successful, additional means of detection and mitigation could be employed.

For example, trusted third parties can serve as “canaries”, publishing cryptographically

signed information about what package metadata was being served by the repository as

of given date. The initial builder can also record the resolution metadata and make it

available to rebuilders, effectively acting as one of the suggested canaries. The holy grail

of avoiding a single point of failure – one in the form of a centralized registry – would be

deriving the resolution metadata of packages from those packages themselves once they

are also rebuilt locally. This would present a bootstrapping challenge that – when solved

– would open the way to dependency resolution without major reliance on any centralized

service.

Regardless of the employed approach to securing the dependency resolution inputs, the

actual concept of Paradigm 3 is to make the inputs plausibly deterministic and then repeat

the dependency resolution process upon every repetition of a given package build. The

remaining steps of the build process are performed analogously to those in Paradigm 2.

The issue of generalization to projects utilizing multiple repositories is also analogous to

that in Paradigm 2.

45

6.5 Paradigm 4 – hermeticity relaxed and determin-

istic dynamic inputs allowed

One can notice that in paradigms 2 and 3 the first step, dependency resolution, is treated

different from the subsequent ones. The result of step 1 is a collection of one or more

lockfiles that identify dependencies’ files, e.g., through names and versions or URLs and

hashes. A tool that implements a given paradigm would need to – between steps 1 and

2 – prepare an appropriate isolated environment for package build, for example a Linux

container. Lockfile-identified dependencies would need to be exposed inside.

In Paradigm 3, the initial download of packages metadata can happen through a

locally-run mock of a repository server. I.e., the isolated dependency resolution process

has a service perform possibly hermeticity-violating actions on its behalf. Yet, care is

taken to make the results of those actions deterministic. Paradigm 4 extends this approach

to all steps of the build. The installation step, knowing project’s recursive dependencies

identified by the lockfiles from step 1, could have the service supply the dependencies’ files

into the otherwise isolated build environment. There is no more need to provide separate

isolated environments to two different parts of the build process – step 1 and the chain

of remaining steps. As long as the hermeticity-violating actions performed by the service

on build’s behalf are deterministic, this should not make build results less reproducible.

The process can be thought of as eventually-hermetic, bacause repeated builds are

likely to request the exact same actions, requiring the same external data, which could

be cached and reused, making subsequent runs network-independent. At the same time,

this approach removes the need of having all build inputs identified in advance,

simplifying the entire build process.

Let us provide another example of an action that could be deterministically carried

out on behalf of the build – checking out of a Git repository revision. Under Paradigm

4 this could happen through the hermeticity-violating service, making the repository a

build input determined dynamically. If the checkout operation uses a repository

URL and, e.g., a Git tag1, it is by itself not deterministic – result can vary in time, for

example due to tags being changed in the upstream repository. In this case, additional

means – like those already mentioned – would be needed to ensure the determinism of the
1unrelated to npm package’s distribution tag and not to be confused with it

46

checkout action. However, no such extra measures are necessary if the checkout operation

uses a commit hash made with an algorithm deemed cryptographically secure. Preimage

attack resistance is of practical relevance, making even SHA-1 applicable as of 2025.

This approach makes the logic of an eventually-hermetic package build more straigh-

forward. If, for example, step 3 required an extra resource or tool, in paradigms 1-3 that

requisite would need to be identified beforehand. Under Paradigm 4 this is not necessary.

6.5.1 Security-oriented justification

How secure would the Paradigm 4 be? Its security relies on the viability of employed

means of ensuring the determinism of dynamic inputs. A GNU Guix-like approach of

maintaining the cryptographic hashes of all downloadable resources in a VCS is possible.

While the collection of resources still needs to be identified in advance of any build, there

is no more need to record exactly which ones are needed for which particular package

build – by itself a huge simplification. This makes Paradigm 4 no worse than – seemingly

the most secure – Paradigm 1, as implemented in GNU Guix.

However, the concept of paradigms – as introduced by this work – is not strictly

dependent on the way of ensuring the integrity and determinism of software sources and

of other build inputs. The approach of keeping hashes of packages’ sources embedded

in code kept in a VCS can be criticized. In theory, changes to the version-controlled

recipes code – with input resources’ hashes – are subject to review. However, despite the

positive security aspects of human-conducted code reviews, such system makes it easy for

reviewers to lose vigilance – especially when facing a “flood” of package recipe updates, as

shown in Listing 6.1. Some could argue that it would be beneficial to completely replace

the version-controlled hashes of sources with a network of canaries that record the tagged

revisions found in VCS repositories and the contents of software’s published release files.

This aproach is applicable to Paradigms 4, 3, and 1 alike. It simply happens not to be

employed by GNU Guix as of 2025.

47

7. Automated package builds experiment

The previous chapters of this work has lead to the following hypotheses and questions.

HYPOTHESIS 1. The dependency tree sizes of npm packages and acceptance of con-

flicting dependencies by the platform appear to be the major sources of difficulty in

packaging the npm ecosystem in reproducibility-focused distributions. Is this truly

the main factor?

HYPOTHESIS 2. Re-generation of npm lockfiles – an operation necessary for the se-

curity improvement offered by proposed paradigms 3 and 4 over Paradigm 2 – is

expected to rarely cause npm package build failures which would not occur with

developer-supplied lockfiles. Are such failures indeed uncommon?

HYPOTHESIS 3. As speculated in 5.4, both direct and indirect dependencies of npm

projects are often unnecessary. Is this indeed the case?

QUESTION 4. What are the typical sizes of dependency trees needed to build npm

projects and how much can these trees be typically shrinked?

QUESTION 5. How often do dependency conflicts actually occur in npm dependency

trees and how often – or to what extent – can they usually be forcibly eliminated

without causing breakage?

QUESTION 6. Are forced removals of npm project’s dependencies and forced elimina-

tion of dependency conflicts likely to cause non-obvious breakages that only become

apparent when seemingly successfully-built package turns out to be disfunctional or

nonfunctional? If so, how best to avoid them?

HYPOTHESIS 7. npm projects’ dependencies are seldom specified by distribution tags

and removal of distribution tags from npm dependency resolution metadata, with

Kraków, 2025

automatic addition of a mock latest tag as mentioned in 6.4, is expected to cause

few dependency resolution failures. Is this a valid assumption?

QUESTION 8. Can we deliver a prototype that performs npm project’s dependency

resolution as proposed in paradigms 3 and 4?

To verify and answer these, an experiment was conducted which involved automated

build attempts of top npm projects, selected by their position in the npm Registry package

rankings. The selected set consisted of projects belonging to the first 200 of either the

most popular dependencies or devDependencies as of April 14th, 2025. Due to some overlap

between the rankings, the actual size of the set was 329. The build procedure, described

in the following subsection, was designed with the help of a trial-and-error approach.

7.1 Method and environment

The experiment was conducted on an x86_64 machine. For details, see Listing 7.1.

All operations were performed under version 5.15.0 of the Linux kernel. All filesystem

operations were backed by an ext4 filesystem. No effort was made to employ means like

disorderfs, described in [LZ21], because this work is not concerned with eliminating the

traditional sources of nondeterminism.

1 Packages:
2 0: Intel Core i7-7500U
3 Microarchitectures:
4 2x Sky Lake
5 Cores:
6 0: 2 processors (0-1), Intel Sky Lake
7 1: 2 processors (2-3), Intel Sky Lake
8 Clusters:
9 0: 4 processors (0-3), 0: 2 cores (0-1), Intel Sky Lake

10 Logical processors (System ID):
11 0 (0): APIC ID 0x00000000
12 1 (1): APIC ID 0x00000001
13 2 (2): APIC ID 0x00000002
14 3 (3): APIC ID 0x00000003

Listing 7.1: Details of the processor used during the experiment, as reported by cpuinfo
utility.

The diagram in Figure 7.1 describes the flow of activities during testing of a single

npm project. In the diagram, start and end are denoted by a filled circle and a circle with

a white ring inside, respectively. Flow branches are represented by hexagons and merges

– by rhombuses. The particular operations present in the diagram are described further

below.

49

reset git repository

checkout git revision

delete upstream
lockfiles (if any)

attempt dependency
resolution, installation

and building

create and save
package tarball

save lockfile
for analysis

reset git repository

checkout git revision

apply package.json
changes verified not
to cause breakage

override
another conflict

attempt dependency
resolution, installation

and building

create and save
package tarball

save lockfile
for analysis

no

no

locate and clone
git repository

no

yes

delete upstream
lockfiles (if any)

no

no

no

yes

success?

success?

built at
least once?

built 3 times?

no
success?

success?

untested conflit?

reset git repository

checkout git revision

apply package.json
changes verified not
to cause breakage
dummify another

dependency

attempt dependency
resolution, installation

and building

create and save
package tarball

save lockfile
for analysis

no

no

delete upstream
lockfiles (if any)

success?

untested indirect
dependency?

reset git repository

checkout git revision

apply removals
verified not to

cause breakage
remove another

dependency

attempt dependency
resolution, installation

and building

create and save
package tarball

save lockfile
for analysis

no

no

delete upstream
lockfiles (if any)

success?

untested direct
dependency?

determine project
version to test

direct dependencies
removal stage

indirect dependencies
dummification stage

idependency conflicts
removal stage

create isolated
environment

yes

yes

yes

yes

yes yes

yes
yes

yes

Figure 7.1: Activity diagram describing the experiment as performed on each tested npm
project.

7.1.1 Containerized environment creation

For each tested project, the version to build was first selected as its highest non-pre-

release package version published before April 14th, 2025. Versions’ publishing dates that

were consulted were part of packages’ metadata downloaded from the npm Registry. For

the selected version, the relevant Git repository URL and – where possible – release’s

Git commit hash were extracted from the available metadata. The URL was sometimes

present with a git+ or git: prefix, which had to be dropped. The repository at learned

URL was then cloned to a local directory, with submodules included through the use of

Git’s --recurse-submodules option.

Upon successful retrieval of source repository contents, a semi-isolated environment,

based on Linux containers, was created. Upon creation, the environment only had access

to a minimal collection of software. It comprised

50

• Node.js runtime including bundled npm application,

• Git version control tool,

• GNU Bash shell, which served as the POSIX-compliant shell used by exec function

of Node.js,

• GNU Coreutils,

• GNU which, invoked by experiment’s code,

• GNU Guile and several Guile libraries, being the driver for the experiment’s code,

and

• dependencies of the above, e.g., a C library.

The environment was created as a container shell managed by GNU Guix. The version

of GNU Guix used was built from Git revision 143faecec3, the last one before April 14th,

2025. It featured Node.js runtime in version 22.14.0, npm in version 10.9.2, and Git

in version 2.49.0. Inside the environment, the applications listed above were available

through the PATH variable and also symlinked under /bin directory through the use of

--emulate-fhs option of guix shell. The environment had no direct access to outside network,

allowing us to state that experiment’s results reflect the behavior of a hermetic build

process. Network isolation also helped make sure that no dependency was installed “on

the side”, without being recorded in project’s lockfile. The environment was also isolated

filsystem-wise, with specially prepared directories shared between the environment and

the host. They were shared read-write or read-only, according to needs. Shared directories

allowed container’s guest to

1. access the code used to drive the experiment,

2. access npm project’s cloned repository,

3. request npm packages’ metadata and files from the host through named fifos,

4. receive them as files, and

5. persist lockfiles and final package files generated during build, for later inspection.

51

7.1.2 Source code checkout preparation

Inside the just-created environment, a checkout to npm project’s appropriate revision was

attempted in the following ways.

1. By switching to the commit hash previously extracted from the package metadata.

2. By switching to a Git tag identical – as a string – to the version being built.

3. By switching to a Git tag identical to the version being built, prefixed with letter

“v”. E.g., for a project version 3.2.2 a switch to Git tag v3.2.2 would be attempted.

This sequence of tries was chosen based on findings from initial manual experiments

and also on prior knowledge of common developer practices. In particular, it was found

that a Git commit hash is not always advertised for a given npm package version. When

it is, it sometimes corresponds to a revision that was never pushed to project’s public

repository. This appears to be most often caused by an automated release publishing

software that makes a local commit as part of its operation. It was decided that in both

cases – of the unknown and nonexistent commit hash – it is best to fall back to probable

Git tags.

If directories named node_modules or dist existed in a successfully checked-out source

repository, they were deleted before the actual build attempt. These directories are used

to store npm project’s installed dependencies and generated files, respectively. Although

they are sometimes checked into version control, they are not sources per se and a hygienic

npm project build should be performed without them.

It is worth noting that every build was conducted inside a full git repository checkout,

with access to the .git directory containing project’s history. This is unlike the practice

of GNU Guix, Debian, and many other distributions where build inputs typically do not

include any version control metadata. The decision was made based on the following

considerations.

1. Build procedures most often rely on version control metadata for side tasks like

generation of software authors list. These tasks are not highly relevant to our

stated questions, but their failures could decrease the number of successful package

builds that we seek to further analyze.

52

2. In actual distribution software packaging, the build process’ reliance on version

control metadata is considered easy to solve compared to the issues of dependencies.

3. While availability of version control metadata could theoretically ease smuggling

of backdoor code in XZ-style attacks, it would be hardly practical – the backdoor

would need to be somehow retrieved from version control history and invoked, in a

hard-to-notice way. Building with full version control metadata is therefore a secure

enough approach to be suggested for adoption by distributions.

7.1.3 Dependency resolution in a network-isolated environment

Dependency resolution was performed with the help of a dummy npm uninstall command,

as shown in Listing 7.2. The options used made npm

• refrain from attempting network requests unrelated to the actual dependency reso-

lution,

• refrain from actually installing the resolved dependencies or running their hooks,

• update project’s lockfile to the current format if an older one was encountered, and

• make requests to a local mock of npm’s repository.

The command either created the package-lock.json file from scratch, wrote a new ver-

sion of it based on an existing lockfile found or left it unchanged. The latter happened

whenever the existing package-lock.json was already in sync with dependency constraints

specified in project’s package.json. It can be noted that npm would also automatically use

an npm-shrinkwrap.json file over package-lock.json if the former were present. However, this was

not the case for any of the npm projects tested.

1 npm --no-progress --no-update-notifier \
2 --audit false uninstall \
3 --ignore-scripts --package-lock-only \
4 --package-lock-version=3 \
5 --registry=http://localhost:8080 \
6 Experiment-Dummy-Package-To-Delete

Listing 7.2: The npm command used to produce an up-to-date lockfile.

For projects that utilize workspaces, attempt was made to also add workspace-related

options --workspaces, --include-workspace-root, and --workspace as appropriate to npm uninstall and

53

subsequent npm invocations. Workspaces are a feature that allows multiple subprojects

to be developed in subdirectories of a single npm parent project, with the parent and each

subproject having its own package.json file. Despite the effort, all workspaced projects that

were tested failed to build for other reasons. Several tested projects were found to use

workspaces for smaller satellite utilities while having the project’s package described by

the package.json file in the root directory of the repository. Those were built without any

workspace-specific npm options.

A minimal server, written for this experiment, listened for HTTP requests on port

8080 inside the network-isolated build environment. It received npm package metadata

requests and passed the requested package names via a fifo to a service running outside

the container. The service downloaded the metadata and filtered it to only contain in-

formation about package versions published before April 14th, 2025. The original npm

distribution tags were stripped, but a mock latest tag was added for every package, point-

ing at its newest non-pre-release version from before April 14th, 2025. Pruned pieces of

metadata were supplied to the guest-side server for use as responses to the npm tool.

7.1.4 Remaining build steps

After successful dependency resolution, packages listed in the lockfile were installed with

the help of an npm ci command, as shown in Listing 7.3. Analogously to the dependency

resolution step, package file requests were sent through the HTTP protocol to the local

port 8080 and were handled by the guest-side server, which in turn relied on the host-side

service to perform the actual downloads on guest’s behalf.

1 npm --no-progress --no-update-notifier \
2 --audit false ci --registry=http://localhost:8080

Listing 7.3: The npm command used to install dependencies.

Successful installation of dependencies was followed by an invocation of a build action

that npm projects conventionally define in their package.json files. The command used is

shown in Listing 7.4.

1 npm --no-progress --no-update-notifier \
2 --audit false run build

Listing 7.4: The npm command used to invoke project-specific build operations.

54

At this point, the package-locks.json file was copied to a subdirectory of the results

directory to be persisted after experiment’s end. The same was done at subsequent

builds, described further below, which involved modifications to the dependency tree. The

collected lockfiles later allowed calculation of dependency tree sizes. When dependency

tree modifications were found to cause changes to the built package, these lockfiles were

also useful in understanding the exact reasons behind those changes.

As of April 14th, 2025, built npm packages are distributed as .tgz archive files. In

the jargon they are called “tarballs” and in case of npm packages they are compressed

using gzip algorithm. An npm pack command exists which can produce such archive from

project’s files. Although the same could be achieved with a traditional tar program, the

npm’s command is convenient, because – among others – it automatically omits unneeded

files like the node_modules directory. The exact form of the command used to persist the built

package is shown in Listing 7.5.

1 npm --no-progress --no-update-notifier \
2 --audit false pack \
3 --pack-destination=/PATH/TO/RESULTS/SUBDIR

Listing 7.5: The npm command used to create the built package file.

7.1.5 Repeated builds without upstream lockfiles

For a project that was successfully built with the described procedure, the process was

repeated with alterations. Upon each repetition, the repository was brought to a clean

state and had added Git hooks – if any – removed. However, re-creation of the entire semi-

isolated environment was deemed unnecessary for the purpose of the experiment. After

the repository was cleaned, each repeated build started with the Git revision checkout

attempts described earlier.

The first alteration of the build was the removal of existing lockfiles recognized by

npm or its alternatives: npm-shrinkwrap.json, package-lock.json, yarn.lock, and pnpm-lock.yaml. It

happened right after the removal of version-controlled node_modules and dist directories. The

removal of lockfiles was done to force a full dependency resolution. If successful, the build

in this form was performed twice to check if dependency resolution and lockfile generation

in npm suffer from obvious nondeterminism issues.

55

Additionally, all later builds of the project also involved the removal of existing lock-

files, besides other alterations.

7.1.6 Elimination of unnecessary direct dependencies

Each project known to build successfully with and without the removal of its version-

controlled lockfile – if any – was tested further. The experiment checked whether it

had the ability to build with each of its direct dependencies – tried in reverse alpha-

betical order – removed. E.g., a project with nine direct dependencies specified in its

package.json – including those listed as dependencies, devDependencies, and optionalDependencies but

not peerDependencies – was built nine times, each time with another direct dependency re-

moved for the first time. The build was considered successful when the npm commands

all finished with zero status. For each such successful build the tested dependency was

recorded as unnecessary and was also removed in all subsequent build attempts, together

with the dependency tested in a given attempt. E.g., if five out of first eight dependen-

cies were found to be unnecessary, then subsequent build was performed with the ninth

dependency plus the initial five removed. I.e., a total of six dependencies were removed

in that build.

The removal consisted of erasing of dependency’s entry in project’s package.json file right

after lockfiles deletion. However, the original package.json contents were always recorded and

restored before the npm pack invocation. This was done to have the built package tarballs –

each of which contains a copy of the package.json – easier to compare for other differences.

Interestingly, for some projects the npm pack did not place the package.json inside the tarball

verbatim and instead generated a variant of that file with some fields changed in a way

custom to the project. One such case, concerning the @testing-library/user-event package, is

discussed in 7.5.4.

All later builds of the project also involved the removal of dependencies identified at

this point and the described restoration of the original package.json file.

7.1.7 Elimination of unnecessary indirect dependencies

With all apparently-unnecessary direct dependencies identified, the remaining indirect

dependencies were tested. For it is unstraightforward to forcibly remove an indirect

dependency from npm project’s dependency tree, a choice was made to instead attempt

56

“dummifying” it. The npm feature of overrides – mentioned in 4.4.2 – was used to

force the npm’s resolution algorithm to always select a mocked, dummy version “0.0.0-

msc-experiment-dummy” of a given dependency. At the same time, for the dependency

package meant to be dummified, the local server providing packages’ files and metadata

on port 8080 would not respond with that package’s real metadata. Instead, it would

give a response indicating that the only available version of that package is the dummy

version, which has no own dependencies. Additionally, it would serve the corresponding

dummy package tarball with only minimal contents.

This process of identifying project’s unnecessary indirect dependencies was analogous

to that concerning direct dependencies. It involved multiple builds – more than a thou-

sand in case of one npm project tested. In each build a single tested indirect dependency

– together with the unnecessary indirect dependencies identified previously – was dummi-

fied. Each time the overrides were added to project’s clean package.json file. The addition

of overrides was carried out together with the removal of unnecessary direct dependen-

cies from package.json. Build’s all npm commands had to finish with zero status for the

tested dependency to be assumed dummifiable. Each time the package-lock.json from the

last successful build was consulted to determine the next dependency to test. Applicable

dependencies were tried in reverse alphabetical order.

All later builds of the project also involved the dummification of indirect dependencies

identified at this point. During the entire experiment, whenever a dependency to override

already had an upstream override specified in package.json, the original override was being

removed.

7.1.8 Elimination of dependency conflicts

Even after the elimination of unnecessary direct and indirect dependencies, project’s de-

pendency tree could still contain extraneous conflicting dependencies. Subsequent builds

were carried out to forcibly remove those conflicts where possible, utilizing overrides. For

every dependency that occured multiple times in multiple versions in the tree, a build

attempt was made with an override which forced that package to be always used in the

same, single version.

• If it happened to be both a direct and indirect dependency of the project – it

was overriden with the version that was previously used to satisfy project’s direct

57

dependency.

• If it was only an indirect dependency – it was overriden with the highest of the

versions in which it previously appeared.

Just like before, the build was repeated to identify every dependency conflict that –

when forcibly removed – does not cause any npm invocation finish with non-zero status.

7.2 Build attempt results

Two projects were found not to actually exist as real pieces of software. I.e., their npm

packages were placeholders. Another 18 projects could not be tested due to limitations of

experment’s environment – they used dependency packages that are distributed through

servers other than the official npm Registry. This made the npm tool attempt downloading

these directly, which failed in a network-isolated environment. The results from build

attempts of the final 309 projects are presented in Figure 7.2. Different types of failures

were classified based on the first error reported in the build attempt. It means that, e.g., a

project with unresolvable dependencies and a missing build action was classified as failing

at the dependency resolution step.

7.2.1 Projects whose source repositories failed to be cloned

For projects in this category, sources could not be automatically retrieved. Either no

repository URL was included in published npm metadata of the package version or the

published URL was not valid.

Some packages were found to provide SSH URLs to their projects’ GitHub repositories.

Such URLs could not be used for anonymous cloning, despite the repositories themselves

being – at least in some cases – public and anonymously cloneable through HTTP. A

sample Git error message is presented in Listing 7.6. It was printed upon an attempt to

use the ssh://git@github.com/sinonjs/sinon.git URL in a git clone command.

There was also a single case where an HTTP URL pointed at a repository that no

longer existed. Other interesting unworkable URLs were ones with a branch name ap-

pended1. Some unworkable URLs were also pointing to web pages of repositories’ sub-
1e.g., https://github.com/emotion-js/emotion.git#main

58

0

20

40

60

80

100

120

Faile
d to

 clo
ne

Git r
evisio

n not fo
und

Faile
d to

 re
solve dependencie

s

Invalid
 upstr

eam lo
ckfi

le

Conventio
ns n

ot fo
llo

wed

Expects
 netw

ork acce
ss

Require
s Y

arn or p
npm

Has d
ependencie

s o
utsi

de npm

Misc
ella

neous b
uild

 fa
ilu

re

Built
only with

 upstr
eam lo

ckfi
le

Built
with

 re
-generated lo

ckfi
le

34

18

3

28

6
2

25

2

33

110

48

Pa
ck

a
g
e
 c

o
u
n
t

Figure 7.2: Statuses of automated hermetized build of top npm projects.

Cloning into 'new-checkout '...
Host key verification failed.
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.

Listing 7.6: Error reported by Git upon an attempt to clone a repository using an SSH
URL.

directories2. In a vast majority of cases a correction of URL with the help of a simple

regular expression could be attempted. Interestingly, none of the tested projects were

found to use a VSC other than Git.

7.2.2 Projects whose relevant source control revisions were not

found

For projects in this category, the git source repository could be cloned but it contained

neither the commit specified in package’s metadata nor a tag corresponding to the version

number being built. Reasons included

• VCS revisions being tagged differently, e.g., PACKAGE-NAME@VERSION,
2e.g., https://github.com/babel/babel/tree/master/packages/babel-core/

59

• particular version’s tag being missing, and

• tags not being used altogether.

7.2.3 Projects that do not follow the conventions

Projects in this category either lacked a package.json file in repository’s root or lacked a build

action.

Size of this category seems to suggest that the conventions which we and others [Gos20]

rely upon are very loosely followed. However, some projects classified here are trivial ones

that simply do not require any operations to be performed as part of a build action. For

example, package semver, as distributed through the npm Registry, was found to only

contain files that are present in its project’s source repository. I.e., none of the files were

created or modified as part of the build process performed by that project’s developers.

The files in semver’s built package archive were found identical to those in the relevant

revision of the source repository, with the repository additionally holding some other

files, e.g., test scripts. semver does indeed not require compilation nor similar build steps.

It has no need for a build action and therefore does not have one specified in its package.json

file.

7.2.4 Projects with dependency resolution failures

Projects in this category had the npm uninstall command fail to create or update the lockfile.

The predominant source of failure is related to peer dependency resolution, with a sample

error message shown in Listing 7.7. Simplifying, peer dependencies are a feature through

which developers can forbid npm from creating a dependency conflict with a particular

package. Typically, an add-on package specifies its base package – which it enhances –

as its peer dependency. If the base package were specified as add-on’s casual dependency,

npm’s resolution algorithm could make the add-on package use its own copy of that base

package. This is typically not the behavior the developer or user wants. Peer dependencies

are a mean to prevent it.

The exact behavior of peer dependencies changed through the history of npm. One

alternative package manager for the npm ecosystem – Yarn – is also known for behaving

different than npm in some situations. It is suspected that most of the projects in this

60

1 npm error code ERESOLVE
2 npm error ERESOLVE could not resolve
3 npm error
4 npm error While resolving: typedoc@0.22.10
5 npm error Found: typescript@4.7.4
6 npm error node_modules/typescript
7 npm error peer typescript@">=2.7" from ts-node@10.5.0
8 npm error node_modules/ts-node
9 npm error ts-node@"^10.2.1" from typescript-json-schema@0.53.0

10 npm error node_modules/typescript-json-schema
11 npm error dev typescript-json-schema@"^0.53.0" from the root project
12 npm error dev typescript@"4.7.4" from the root project
13 npm error
14 npm error Could not resolve dependency:
15 npm error peer typescript@"4.0.x || 4.1.x || 4.2.x || 4.3.x || 4.4.x || 4.5.x" from typedoc@0.22.10
16 npm error node_modules/typedoc
17 npm error dev typedoc@"^0.22.10" from the root project
18 npm error
19 npm error Conflicting peer dependency: typescript@4.5.5
20 npm error node_modules/typescript
21 npm error peer typescript@"4.0.x || 4.1.x || 4.2.x || 4.3.x || 4.4.x || 4.5.x" from typedoc@0.22.10
22 npm error node_modules/typedoc
23 npm error dev typedoc@"^0.22.10" from the root project
24 npm error
25 npm error Fix the upstream dependency conflict, or retry
26 npm error this command with --force or --legacy-peer-deps
27 npm error to accept an incorrect (and potentially broken) dependency resolution.

Listing 7.7: Error reported upon peer dependency resolution failure during ts-node project
build.

category could have their dependencies resolved successfully with older version of npm or

with Yarn. It was found that 27 packages in this category do have a yarn.lock file in the

VSC, indicating their developers likely use Yarn over npm.

7.2.5 Projects with invalid upstream lockfiles

The npm uninstall command was invoked during every project build to make sure an up-

to-date lockfile is in place. Despite that, for two packages a lockfile was left behind that

npm ci later reported as invalid due to being out of sync with project’s package.json. One of

these projects had a preexisting package-lock.json file and the other had a yarn.lock file3.

7.2.6 Projects that expect network access to build

Projects in this category failed to build due to unsuccessful network request attempts

other than the attempts mentioned at the beginning of 7.2.

The majority of build failures in this category occured when project’s development

dependency was trying to download a web browser binary for browser-based tests. Ex-

amples of other non-npm resources that projects tried to download were font files from
3npm also reads a yarn.lock when no other lockfile is present

61

Google Fonts and sources for automated native compilation of a library whose Node.js

bindings package was being installed.

It can be stated that network accesses during npm project builds are commonly made

to facilitate installation of architecture-specific software binaries, as these are inconvenient

to distribute through the architecture-agnostic npm Registry.

7.2.7 Projects that require a build tool other than npm

Projects in this category are known to require either Yarn or pnpm to build. They could

be classified with certainty because either

• their package.json files contained special URLs or package names that npm could not

handle, or

• their build processes printed messages that explicitly informed the developer about

the need to use a particular tool.

There are many more projects which likely rely on Yarn or pnpm but could not be

classified here with certainty, see 7.2.4.

7.2.8 Projects with additional non-npm dependencies

Projects in this category need additional tools that are not installable through npm.

Unlike projects mentioned in 7.2.6, these rely on the developer to install the additional

tool.

Experiment logs indicated failures upon searching for Python executable and for con-

figuration files of popular shells.

7.2.9 Projects with other build failures

Projects in this category failed to build due to reasons other than those discussed up to

this point. Failures occured due to problems like missing modules, missing variable, and

an operation hanging indefinitely.

62

7.2.10 Projects that could be built only when using upstream

lockfiles

Projects in this category failed to build only after their upstream lockfiles were removed.

After seemingly successfult dependency resolution, errors were raised during TypeScript

compilation. The errors almost certainly resulted from newer versions of project’s de-

pendencies being used. This occured despite the use of Semantic Versioning and the

respecting of dependency constraints declared by projects.

7.2.11 Projects built with both upstream and re-generated lock-

files

Packages in this category are considered to have been built successfully, because all npm

command invocations from the first two builds finished with zero status. There is no

guarantee that the packages built are fully functional. For example, some projects like

@testing-library/react rely on an additional tool called semantic-release, which is not invoked

as part of npm run build. That tool is responsible for analyzing project’s change history and

determining the right version number to be recorded in project’s package.json file [Mar+nt].

When its use is omitted, the built package is reported as having a placeholder version,

e.g., “0.0.0-semantically-released”.

It is expected that a more polished and defect-free build process would often involve a

dependency tree of several more or several less packages than in this experiment. Nonethe-

less, it was assumed that dependency sets found necessary for successful npm install and

npm build invocations do represent the characteristics of the projects well enough.

Results presented through the rest of this chapter concern the dependency trees of

projects from this very category.

7.3 Dependency trees after removals of dependencies

and their conflicts

The sizes of the original dependency trees, produced in project builds with upstream

lockfiles removed, are shown in Figure 7.3, together with the sizes of pruned trees. Each

63

pair of boxes represents the experiment at a different stage. The left box of each pair

shows the average number of project dependencies where all distinct versions of the same

package are counted. E.g., an npm package foo that occurs in a dependency tree three

times as foo@1.2.3, foo@2.1.0, and again foo@2.1.0 is counted as two. The right box of each pair

shows the average number of dependencies with all versions of a single package counted

as one. E.g., the foo introduced before is now counted as one. Standard deviation of the

sample is additionally plotted over every box.

Individual projects’ dependency tree sizes are plotted as circles over every box. 30

projects were found to also have their corresponding packages present in Debian Book-

worm as of June 3rd, 2025. They are represented by filled, black circles. No clear relation

between dependency tree sizes and presence in Debian can be seen at any stage of the

experiment. Also consult Figure 7.5 for a variant of this plot that omits builds of packages

which appear to be nonfunctional due to aggressive dependency elimination.

200

400

600

800

1000

1200

1400

1600

1800

0

Vanilla dependency tree

Unnecessary direct dependencies removed

Unnecessary dependencies dummified

Conflicts removed where possible

All dependency packages (version-agnostic)

All dependency package versions

817.3 303.1 156.5 149.4703.5 279.6 147.7 146.9

Packaged in Debian

Absent in Debian

D
e
p
e
n
d
e
n
cy

 c
o
u
n
t

Figure 7.3: Dependency tree sizes of built npm projects.

7.4 Dependency conflict counts

Projects were further categorized by the number of dependency conflicts that could not be

removed with the method used. The categories are visualized in Figure 7.4. Counts of all

64

projects and counts of projects having corresponding packages in Debian are shown. Also

consult Figure 7.6 for a variant of this plot that omits builds of packages which appear

to be nonfunctional due to aggressive dependency elimination.

As can be seen, most of the projects had few to no remaining dependency conflicts.

Once again, there was no clear relation between the number of remaining dependency

conflicts and presence in Debian. Given this distribution’s norms, this suggest that the

authors of Debian packaging likely managed to further remove some conflicts that could

not be eliminated with the experiment’s method. They possibly used more invasive meth-

ods like source code patching.

0

5

10

15

20

25

30

35

0 1 2 3 4 5 84

All rebuilt

Packaged in Debian

34

7

3
1 1 1 1

19

5

B
u
ilt

 p
ro

je
ct

 c
o
u
n
t

Remaining dependency conflicts count

Figure 7.4: Counts of built projects with different numbers of unremovable dependency
conflicts.

7.5 Differences in build outputs produced during the

experiment

The repeated builds with upstream lockfiles removed had their produced package tarballs

and generated package-lock.json files compared. The files produced on two build runs were

found identical in case of every successfully built project4. This does not yet guarantee

that the builds and dependency resolutions are reproducible. However, it does indicate
4npm authors should be credited for making npm pack produce tarballs without nondeterministic times-

tamps

65

that differences found after dependency removals, etc. are likely the effect of those alter-

ations and not manifestations of builds nondeterminism.

It was found that 18 out of 48 successfully built projects had their package tarballs

differ as the result of either dependency removals, dummifications, or conflict removals.

All these cases were manually inspected. Two differences were found to be caused by

reordered package.json entries and appear to be mere artifacts of this experiment’s method

of restoring project’s original package.json file before npm pack invocation. Some of the more

interesting cases are discussed below.

7.5.1 Use of a different dependency version

Several times an alteration of the build process allowed the npm’s resolution algorithm to

use a newer version of a dependency which then caused generation of different but still

correct code. One example is the concurrently console application written in TypeScript.

Package typescript, providing a TypeScript compiler, was specified as its direct development

dependency. During the experiment this direct dependency was removed, but package

typescript still made its way to the dependency tree due to being required by another

dependency – @hirez_io/observer-spy. Its constraint on typescript’s version was looser than

that present before, causing version 5.8.3 to be used instead of former 5.2.2. A sample of

changes caused by the use of that newer TypeScript compiler is presented in Listing 7.8.

It is worth noting that the dependency @hirez_io/observer-spy – even if not necessary by

itself – could not be eliminated with this experiment’s method.

7.5.2 Inlining of a dependency

One similar case was that of built axios package, which – besides also showing generated

code differences resulting from changed compiler/bundler version – had its dependency

proxy-from-env treated differently, despite always occuring in the same version 1.1.0. Initially,

proxy-from-env was specified as axios’ runtime dependency and was merely referenced from

the code being generated during build. When, as part of the experiment, proxy-from-env

was removed as project’s direct dependency, it remained present in the dependency tree

due to being required by certain development dependency. proxy-from-env was therefore

itself flagged as an indirect development dependency, which made the bundler treat it

differently and inline it in axios’ generated code.

66

│ ├── package/dist/src/concurrently.d.ts
│ │ @@ -1,9 +1,7 @@
│ │ -/// <reference types="node" />
│ │ -/// <reference types="node" />
│ │ import { Writable } from 'stream';
│ │ import { CloseEvent, Command, CommandIdentifier, CommandInfo, KillProcess, SpawnCommand } from './

 command';
│ │ import { SuccessCondition } from './completion-listener';
│ │ import { FlowController } from './flow-control/flow-controller ';
│ │ import { Logger } from './logger';
│ │ /**
│ │ * A command that is to be passed into `concurrently()`.
│ ├── package/dist/src/command-parser/expand-arguments.d.ts
│ │ @@ -5,14 +5,14 @@
│ │ */
│ │ export declare class ExpandArguments implements CommandParser {
│ │ private readonly additionalArguments;
│ │ constructor(additionalArguments: string[]);
│ │ parse(commandInfo: CommandInfo): {
│ │ command: string;
│ │ name: string;
│ │ - env?: Record<string, unknown> | undefined;
│ │ - cwd?: string | undefined;
│ │ - prefixColor?: string | undefined;
│ │ - ipc?: number | undefined;
│ │ - raw?: boolean | undefined;
│ │ + env?: Record<string, unknown>;
│ │ + cwd?: string;
│ │ + prefixColor?: string;
│ │ + ipc?: number;
│ │ + raw?: boolean;
│ │ };
│ │ }

Listing 7.8: Excerpt from diffoscope’s report of differences in built concurrently package
tarballs.

7.5.3 Digest included in the generated package

If project’s generated files include a hash of its dependency specifications or a similar

derived value, it is an obvious source of difference in this experiment. One of such projects

is ts-jest, which places a digest like 4ec902e59f1ac29ff410d624dcccf9b192920639 in a .ts-jest-digest file

inside its package tarball.

7.5.4 Apparently disfunctional built packages

Several times a change to project’s dependency tree did actually cause a significant change

to the build output. In multiple cases, a removed package could not be found by a

bundler tool called Rollup, which then treated it as an “external” dependency than need

not be bundled. Rollup merely issued a warning about a reference to the now-absent

code module and proceeded without it. An example of this can be seen in Listing 7.9

with an excerpt from the log of rollup-plugin-typescript2 project build. rollup-plugin-typescript2

specified package object-hash as a development dependency and had its code included in an

67

amalgamated script file generated by Rollup. After object-hash was removed, the invocation

of rollup-plugin-typescript2’s build action still finished with zero status, with the generated

amalgamated script file being smaller by the size of the missing dependency. If the

rollup-plugin-typescript2 package built this way were to be later used, its code would likely

encounter an error when trying to import the object-hash module.

1
2 > rollup-plugin-typescript2@0.36.0 prebuild
3 > rimraf dist/*
4
5
6 > rollup-plugin-typescript2@0.36.0 build
7 > rimraf dist/* && rollup -c
8
9

10 src/index.ts → dist/rollup-plugin-typescript2.cjs.js, dist/rollup-plug
11 in-typescript2.es.js, build-self/dist/rollup-plugin-typescript2.es.js...
12 rpt2: typescript version: 5.8.3
13 rpt2: tslib version: 2.8.1
14 rpt2: rollup version: 2.79.2
15 rpt2: rollup-plugin-typescript2 version: 0.35.0
16 rpt2: ambient types changed, redoing all semantic diagnostics
17 rpt2: transpiling '/tmp/checkout/src/index.ts'
18 rpt2: transpiling '/tmp/checkout/src/context.ts'
19 rpt2: transpiling '/tmp/checkout/src/host.ts'
20 rpt2: transpiling '/tmp/checkout/src/tsproxy.ts'
21 rpt2: transpiling '/tmp/checkout/src/ioptions.ts'
22 rpt2: transpiling '/tmp/checkout/src/tscache.ts'
23 rpt2: transpiling '/tmp/checkout/src/rollingcache.ts'
24 rpt2: transpiling '/tmp/checkout/src/icache.ts'
25 rpt2: transpiling '/tmp/checkout/src/diagnostics.ts'
26 rpt2: transpiling '/tmp/checkout/src/diagnostics-format-host.ts'
27 rpt2: transpiling '/tmp/checkout/src/parse-tsconfig.ts'
28 rpt2: transpiling '/tmp/checkout/src/get-options-overrides.ts'
29 rpt2: transpiling '/tmp/checkout/src/tslib.ts'
30 rpt2: rolling caches
31 (!) Unresolved dependencies
32 https://rollupjs.org/guide/en/#warning-treating-module-as-external-dependency
33 object-hash (imported by src/tscache.ts)
34 created dist/rollup-plugin-typescript2.cjs.js, dist/rollup-plugin-typescript2.es.js, build-self/dist/rollup-
 plugin-typescript2.es.js in 1m 0.7s

Listing 7.9: The output of npm run build invocation with a missing dependency reported by
Rollup.

A single interesting case was that of @testing-library/user-event project and the package.json

file generated for its package tarballs. Several – seemingly vital – package.json keys were no

longer present after project’s typescript dependency was removed. The change caused by

typescript’s removal is shown in Listing 7.10).

In some cases, as subsequent dependencies of a project were eliminated, a bundler

tool combined the dependencies in a different order, making amalgamated scripts diffi-

cult to compare with diff-like tools. There were also cases where the size of individual

generated files would increase by an order of magniture or even go up and down during

a series of builds. One suspected reason for increasing amalgamated script size – besides

68

│ ├── package/package.json
│ │ ├── Pretty-printed
│ │ │ @@ -3,6 +3,7 @@
│ │ │ "bugs": {
│ │ │ "url": "https://github.com/testing-library/user-event/issues"
│ │ │ },
│ │ │ + "dependencies": {},
│ │ │ "description": "Fire events the same way the user does",
│ │ │ "devDependencies": {
│ │ │ "@esbuild-plugins/node-modules-polyfill": "^0.2.2",
│ │ │ @@ -40,23 +41,6 @@
│ │ │ "node": ">=12",
│ │ │ "npm": ">=6"
│ │ │ },
│ │ │ - "exports": {
│ │ │ - ".": {
│ │ │ - "default": "./dist/esm/index.js",
│ │ │ - "require": "./dist/cjs/index.js",
│ │ │ - "types": "./dist/types/index.d.ts"
│ │ │ - },
│ │ │ - "./dist/cjs/*.js": {
│ │ │ - "default": "./dist/cjs/*.js",
│ │ │ - "import": "./dist/esm/*.js",
│ │ │ - "types": "./dist/types/*.d.ts"
│ │ │ - },
│ │ │ - "./dist/esm/*.js": {
│ │ │ - "default": "./dist/esm/*.js",
│ │ │ - "require": "./dist/cjs/*.js",
│ │ │ - "types": "./dist/types/*.d.ts"
│ │ │ - }
│ │ │ - },
│ │ │ "files": [
│ │ │ "dist"
│ │ │],
│ │ │ @@ -68,8 +52,6 @@
│ │ │ "testing"
│ │ │],
│ │ │ "license": "MIT",
│ │ │ - "main": "./dist/cjs/index.js",
│ │ │ - "module": "./dist/esm/index.js",
│ │ │ "name": "@testing-library/user-event",
│ │ │ "peerDependencies": {
│ │ │ "@testing-library/dom": ">=7.21.4"

Listing 7.10: Excerpt from diffoscope’s report of differences in package.json files inside built
@testing-library/user-event package tarballs.

the one discussed in 7.5.2 – is polyfilling. It is the action of replacing newer JavaScript

language constructs used by programmers with code that is compatible with older lan-

guage runtimes. An older version of a build tool would typically aim to support more

legacy runtimes, applying more polyfills and increasing the produced script sizes as a

result. Nonetheless, for the purpose of this experiment, whenever the nature and effect

of changes in a build output were unclear, the package was considered one of the total of

eight disfunctional packages.

7.5.5 Updated statistics

We are interested in the relation between project’s dependency tree characteristics and its

packagability for software distributions. The statistics presented in 7.3 and 7.4 included

69

eight projects with assumed disfunctionalities introduced by this very experiment. Three

of these do have corresponding Debian packages. As these eight cases could make our

results deceptive, the statistics are now presented again, with problematic projects not

taken into account. Dependency tree sizes at various stages of the experiment are pre-

sented in Figure 7.5. Projects’ categorization by the number of remaining dependency

conflicts is visualized in Figure 7.6.

200

400

600

800

1000

1200

1400

1600

1800

0

Vanilla dependency tree

Unnecessary direct dependencies removed

Unnecessary dependencies dummified

Conflicts removed where possible

All dependency packages (version-agnostic)

All dependency package versions

812.5 290.0 166.5 159.7700.6 269.4 157.5 156.8

Packaged in Debian

Absent in Debian

D
e
p
e
n
d
e
n
cy

 c
o
u
n
t

Figure 7.5: Dependency tree sizes of built npm projects. Packages which appear to be
nonfunctional due to aggressive dependency elimination are not included.

As one can see, even these “cleaned” results show no relation between project’s de-

pendency tree sizes and its Debian presence.

70

0

5

10

15

20

25

30

35

0 1 2 3 4 5 84

All rebuilt

Packaged in Debian
29

4 3
1 1 1 1

17

B
u
ilt

 p
ro

je
ct

 c
o
u
n
t

Remaining dependency conflicts count

Figure 7.6: Counts of built projects with different numbers of unremovable dependency
conflicts. Packages which appear to be nonfunctional due to aggressive dependency elim-
ination are not included.

71

8. Conclusions

The results of conducted experiment allow the questions stated at the beginning of 7 to

be answered.

8.1 Naming the main hindrance to packaging the npm

ecosystem

We expected that huge dependency trees and presence of conflicting dependencies are

the major obstacles to packaging npm projects into reproducibility-focused software dis-

tributions. The experiment results show the contrary. If this hypothesis were true, we

would see npm projects with more complex dependency trees less frequently packaged

into Debian – but there is no such relation.

What are then the most likely reasons for relatively small number of software from the

npm ecosystem in Debian and GNU Guix? For the latter, the challange of bootstrapping

several popular, self-depending build tools appears relevant. Five of these were mentioned

in 4.5.1. As of June 3rd, 2025, four of them – typescript, @babel/core, rollup, and gulp – are

present in Debian, albeit under different names. The Debian packages of all four were

also found to depend on themselves to build. Since GNU Guix’ policies make it more

difficult to add self-depending packages to the distribution, this explains the drastically

different coverage of the npm ecosystem by these system software distributions.

Aside from that, the incompatibility of JavaScript developers’ workflows with system

software distribution packages – as highlighted in 4.6 – should be considered the major

issue.

Kraków, 2025

8.2 Developer-supplied lockfile being infrequently nec-

essary

As found, only two tested projects could be built with an upsteam lockfile but failed when

it was re-generated. Meanwhile, 48 packages were built successfully in both ways. This is

consistent with the expectations. Repetition of the dependency resolution is not a likely

source of build failures.

8.3 Indispensibility of direct and indirect npm build

dependencies

It was found that a non-negligible subset of both direct and indrect npm project depen-

dencies is unnecessary for a successful build. The effect of removal of unnecessary direct

dependencies can be comprehended by comparing the leftmost two pairs of boxes in Fig-

ure 7.5. There is on average an almost triple reduction in dependency tree sizes, although

with a huge variance. The average number of direct dependencies shrank from 31.6 with

sample standard deviation of 16.4 to 7.3 with sample standard deviation of 4.9.

Comparing the second and third pair of boxes in Figure 7.5 shows that almost a half

of projects’ remaining indirect dependencies is also not necessary during build, again with

a huge variance. The experiment’s automated method of determining the unnecessary

dependencies was not perfect, as shown in 7.5.1, but sufficient to allow a conclusion that

during packaging, the elimination of both kinds of dependencies can be worth attempting.

8.4 Typical dependency tree sizes of npm projects

The average sizes of built projects’ dependency trees ranged from 12 to 1721 with sample

standard deviation of 419.5, as shown in Figure 7.5. With the experiment’s method, it

was possible to reduce the tree sizes by about a ratio of five on average.

The final dependecy tree sizes of about 160 are not drastically higher than those in

other software ecosystems. For example, as of June 3rd, 2025, Debian package python-xrt

was found to be built in an environment with 180 installed packages named python-*, as

73

evidenced in its .buildinfo file.

It is worth noting that the numbers discussed here and in the following section might

be representative of only the more complex npm packages. As explained in 7.2.3, there

can be many popular npm projects like semver that do not require an actual build action,

likely have fewer declared dependencies, and likely only require the npm tool to create

the package tarball.

8.5 Frequency of dependency conflicts in npm projects

Among the npm projects built successfully, only one had no conflicting dependencies in

its original tree. This shows that dependency conflicts are indeed a normal and accepted

thing in the npm ecosystem.

In the original dependency trees, the count of dependencies in conflict averaged at

86.7 and sample standard deviation was 57.5. In case of more than half of the projects

the conflicts were completely eliminated. Several cases of unremovable conflicts remained,

as can be sees in Figure 7.6. However, this part of the results should not be considered

entirely representative of the real state of affairs, as explained in 7.4. It is expected that

through manual work the build process of many more npm packages can be made free of

dependency conflicts.

8.6 Package disfunctionality caused by dependency

tree reduction

As witnessed in 7.5.4, there is a non-negligible number of cases where forced removal of

direct or indirect dependencies causes built package to lack important pieces of code or

have other deficiencies. Many of these problems were caused by Rollup bundler’s liberal

treatment of missing code modules and could be automatically detected, for example by

searching the build logs for specific strings.

Nevertheless, the risk of building disfunctional packages appears relatively high, which

is not acceptable if this experiment’s method were to be used for preparation of package

recipes in a reproducibility-oriented software distribution. Since in more than half of all

cases the diffoscope’s reports on built package differences were found comprehensible, it

74

is advisable to manually investigate dependency removals whose effects are unclear.

Additionally, the method itself proved to have a weakness of allowing a removed di-

rect dependency to still appear as an indirect dependency, as shown in 7.5.1 and 7.5.2.

Although this does not appear to have lead to built packages’ disfunctionalities during

the experiment, it is a space for improvement. One simple solution would be to eliminate

direct dependencies through dummification, as it was already done with indirect ones.

8.7 Relevance of npm package distribution tags for

successful dependency resolution

The dependency resolution failures described in 7.2.4 were all manually analyzed and

none was found to be caused by a dependency specification referencing a distribution

tag omitted in the experiment. Four of the built projects were found to have a direct

or indirect dependency specified by the latest tag. Among others, typescript – the most

popular npm package according to the ranking in 5.3 – requires its direct development

dependency @types/node to be in version tagged latest.

Concluding, the special latest tag should be present in npm dependency metadata to

avoid needless dependency resolution failures. Fortunately, it can usually be derived from

the available package versions. All other tags can in the vast majority of cases be omitted

from the dependency resolution matadata, removing the need to rely on external, mutable

npm distribution tags information.

8.8 Prototype for npm dependency resolution under

Paradigm 3

The experiment’s environment resembled that proposed in 6.4 for Paradigm 3 for her-

meticity and reproducibility. The approach with a host-side service performing requests

on behalf of the isolated guest was indeed workable. The experiment also showed that

this prototype could benefit from added ability to provide the guested npm process with

dependency package files hosted on different sites than just the npm Registry. This would

require additional work to have npm’s package tarball requests reach the locally-running

75

service. A solution could involve configuring npm to use a TLS-enabled HTTP proxy in

the likes of mitmproxy [Cor+nt]. While burdensome, it should be workable.

At the same time, obtained results did not contain the expected indicators that

Paradigm 1 – and Paradigm 2 with flat input metadata of the dependency resolution

step – is insufficient in practice for handling the complex npm ecosystem. This means

that new paradigms, as proposed in this work, are not necessary for further progress in the

field of reproducible software builds. However, paradigms 3 and 4 can still prove useful

in addressing the bootstrappability and developer usefulness issues named in 8.1.

76

9. Summary

Throughout the course of this work it was found that software industry shows some

modest interest in reproducible builds. Practical difficulties in applying reproducibility

to software projects hinder popularisation of this security measure. Software developed

around popular technologies must become easier to rebuild hermetically and to test for

reproducibility. This will allow reproducible builds to be more broadly recommended and

mandated.

Even though the concept of end user verification of build reproducibility offers in-

crease in security confidence, years after 2018 saw little progress in its application. Due

to the issues of rebuilder lag and occasional build nondeterminism, continuous tests per-

formed independently of end users should be considered a more practically viable security

measure.

Even when build reproducibility is aimed and tested for, software distributions’ ap-

proaches differ. Metadata used to reproduce Debian packages was found insufficient to

also reproducibly verify the results of dependency resolutions that package builds relied

on. This is not a severe vulnerability. However, it motivates increased interest in purely

functional package managers, whose design excludes the possibility of such “verification

hole” occuring.

Contrary to intuition, traditional software packaging scheme of Debian can be appli-

cable even to npm software with complex dependency graphs. One could still attempt

to utilize suggested Paradigm 3 or 4 to replace existing approaches of Debian and GNU

Guix. However, such efforts would offer no certain benefit.

Although npm packages tend to have large dependency tree sizes and conflicting de-

pendencies, this is not the ultimate reason for almost zero coverage of the npm ecosystem

by GNU Guix. Instead, the issues of package bootstrappability appear to be the deter-

mining factor. These, however, are practically solvable.

The packages in reproducible software distributions must be bridged with developers’

Kraków, 2025

preferred workflows. If this does not happen, the distributions will not only be slow in

including software from the npm Registry and similar repositories. The software already

in those distributions will fail to bring the security benefits that it could.

As long speculated, much of declared dependencies of a typical npm project are not

needed to build it. It was found that many indirect dependencies are also unnecessary.

Their omission is crucial both to simplify packaging into software distributions and to

reduce the software supply chain attack surface.

78

10. Future work

During npm project builds analysis it was found that projects exist which require no code

transformations during build. One such case is described in detail in 7.2.3. If identified,

projects from this category could be packaged hermetically and reproducibly with minimal

effort. Automated identification of such projects could be a future research goal.

After the experiment, bootstrappability was named a likely major reason for small

coverage of the npm ecosystem by GNU Guix. The finding of viable and optimal bootstrap

chains of npm packages could therefore be the subject of another research.

Paradigms 3 and 4 for hermeticity and reproducibility were proposed to address the

issue of incomprehensibly complex dependency relations between npm packages. It was

found that in the context of reproducible builds, the issue is resolvable even without

employing these paradigms. However, it is yet to be checked – possibly in a new work –

whether these paradigms can actually make software packaging process less labor-intensive

and therefore more efficient.

This work touches the topic of securing the inputs of software builds. The applicability

of methods like the suggested canaries could be further investigated.

A subset of tested projects did not have their VCS revisions tagged in the expected

way. The tagging habits of developers and means of automated identification of VCS

revisions corresponding to releases could be researched. A possible approach to solving

the problem of missing VCS tags could involve comparing commit dates with package

version release dates. If devised, a successful method would benefit VCS-based software

packaging, which appears desirable in the light of the XZ backdoor.

npm developers are not incentivized make their software easily bootstrappable. Proof

of concept of Ken Thompson’s Trusting Trust attack [Tho84] could be presented for one

or more popular npm packages. It could help raise awareness of the supply chain issues

and make the community interested in rebuildability and ultimately bootstrappability.

The PoC could be a self-implanting backdoor in one of the self-depending builds tool.

Kraków, 2025

Bibliography

[Abd+20] Rabe Abdalkareem, Vinicius Oda, Suhaib Mujahid, and Emad Shihab. “On

the impact of using trivial packages: an empirical case study on npm and

PyPI”. In: Empirical Software Engineering 25.2 (Mar. 2020), pp. 1168–1204.

issn: 1573-7616. doi: 10 . 1007 / s10664 - 019 - 09792 - 9. url: https : / /

rabeabdalkareem.github.io/files/12-abdelkareem_emse2020.pdf (vis-

ited on July 3, 2025).

[Adr+25] Diglio Adrian et al. Supply-chain Levels for Software Artifacts. Open Source

Security Foundation. 2025. url: https://slsa.dev/spec/v1.1/ (visited on

July 2, 2025).

[BCR15] Scott Bauer, Pascal Cuoq, and John Regehr. “Deniable Backdoors Using

Compiler Bugs”. In: International Journal of PoC ‖ GTFO 8.3 (2015). url:

https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf.

[Boj20] Tao Bojlén. A web of trust for npm. 2020. url: https://btao.org/posts/

2020-10-02-npm-trust/ (visited on July 3, 2025).

[Cor+nt] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. mitm-

proxy: A free and open source interactive HTTPS proxy. [Version 12.0]. 2010–present.

url: https://mitmproxy.org/.

[Cou+24] Ludovic Courtès, Timothy Sample, Simon Tournier, and Stefano Zacchiroli.

“Source Code Archiving to the Rescue of Reproducible Deployment.” In:

CoRR abs/2405.15516 (2024). url: http : / / dblp . uni - trier . de / db /

journals/corr/corr2405.html#abs-2405-15516.

[Cou13] Ludovic Courtès. “Functional Package Management with Guix.” In: ELS. Ed.

by Christian Queinnec, and Manuel Serrano. ELSAA, 2013, pp. 4–14. url:

http://dblp.uni-trier.de/db/conf/els/els2013.html#Courtes13.

Kraków, 2025

https://doi.org/10.1007/s10664-019-09792-9
https://rabeabdalkareem.github.io/files/12-abdelkareem_emse2020.pdf
https://rabeabdalkareem.github.io/files/12-abdelkareem_emse2020.pdf
https://slsa.dev/spec/v1.1/
https://www.alchemistowl.org/pocorgtfo/pocorgtfo08.pdf
https://btao.org/posts/2020-10-02-npm-trust/
https://btao.org/posts/2020-10-02-npm-trust/
https://mitmproxy.org/
http://dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15516
http://dblp.uni-trier.de/db/journals/corr/corr2405.html#abs-2405-15516
http://dblp.uni-trier.de/db/conf/els/els2013.html#Courtes13

[Cou15] Ludovic Courtès. GNU Guix 0.9.0 released. 2015. url: https://savannah.

gnu.org/forum/forum.php?forum_id=8398 (visited on July 2, 2025).

[Cou22] Ludovic Courtès. “Building a Secure Software Supply Chain with GNU Guix”.

In: The Art, Science, and Engineering of Programming 7.1 (2022). doi: https:

/ / doi . org / 10 . 22152 / programming - journal . org / 2023 / 7 / 1. eprint:

2206.14606 (cs.SE). url: https://programming-journal.org/2023/7/1/.

[DHV] Joshua Drexel, Esther Hänggi, and Iyán Méndez Veiga. Reproducible Builds

and Insights from an Independent Verifier for Arch Linux. doi: https://

doi.org/10.18420/sicherheit2024_016. arXiv: 2505.21642 [cs.CR].

[Dig+22] Adrian Diglio, Jay White, Jasmine Wang, Tom Bedford, Christopher Robin-

son, and David A. Wheeler. Secure Supply Chain Consumption Framework.

Open Source Security Foundation. 2022. url: https : / / openssf . org /

projects/s2c2f/ (visited on July 2, 2025).

[Dol06] Eelco Dolstra. “The purely functional software deployment model.” PhD the-

sis. Utrecht University, Netherlands, 2006. url: https://edolstra.github.

io/pubs/phd-thesis.pdf.

[Gos20] Pronnoy Goswami. “Investigating the Reproducbility of NPM packages”. Mas-

ter’s thesis. Virginia Polytechnic Institute and State University, 2020. url:

https : / / vtechworks . lib . vt . edu / server / api / core / bitstreams /

3ef5408d-8617-4993-ac7e-d171a13dfa22/content.

[Kas19] Andrei Kashcha. npm rank. 2019. url: https://gist.github.com/anvaka/

8e8fa57c7ee1350e3491 (visited on July 3, 2025).

[Lak25] Ravie Lakshmanan. Over 70 Malicious npm and VS Code Packages Found

Stealing Data and Crypto. The Hacker News. 2025. url: https://thehackernews.

com/2025/05/over-70-malicious-npm-and-vs-code.html (visited on

July 3, 2025).

[Lam+] Chris Lamb et al. SOURCE_DATE_EPOCH. Reproducible Builds. url:

https://reproducible-builds.org/docs/source-date-epoch/ (visited

on July 8, 2025).

81

https://savannah.gnu.org/forum/forum.php?forum_id=8398
https://savannah.gnu.org/forum/forum.php?forum_id=8398
https://doi.org/https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/https://doi.org/10.22152/programming-journal.org/2023/7/1
2206.14606
https://programming-journal.org/2023/7/1/
https://doi.org/https://doi.org/10.18420/sicherheit2024_016
https://doi.org/https://doi.org/10.18420/sicherheit2024_016
https://arxiv.org/abs/2505.21642
https://openssf.org/projects/s2c2f/
https://openssf.org/projects/s2c2f/
https://edolstra.github.io/pubs/phd-thesis.pdf
https://edolstra.github.io/pubs/phd-thesis.pdf
https://vtechworks.lib.vt.edu/server/api/core/bitstreams/3ef5408d-8617-4993-ac7e-d171a13dfa22/content
https://vtechworks.lib.vt.edu/server/api/core/bitstreams/3ef5408d-8617-4993-ac7e-d171a13dfa22/content
https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
https://gist.github.com/anvaka/8e8fa57c7ee1350e3491
https://thehackernews.com/2025/05/over-70-malicious-npm-and-vs-code.html
https://thehackernews.com/2025/05/over-70-malicious-npm-and-vs-code.html
https://reproducible-builds.org/docs/source-date-epoch/

[Lem15] Christine Lemmer-Webber. Let’s Package jQuery: A Javascript Packaging

Dystopian Novella. 2015. url: https://dustycloud.org/blog/javascript-

packaging-dystopia/ (visited on July 3, 2025).

[Lev+25] Holger Levsen, Hideki Yamane, Lucas Nussbaum, Andreas Barth, Raphaël

Hertzog, Adam Di Carlo, and Christian Schwarz. Debian Developer’s Refer-

ence. 13.20. Debian project. 2025. url: https://www.debian.org/doc/

manuals/developers-reference/index.en.html (visited on July 3, 2025).

[Lin+24] Mario Lins, René Mayrhofer, Michael Roland, Daniel Hofer, and Martin Schwaighofer.

“On the critical path to implant backdoors and the effectiveness of potential

mitigation techniques: Early learnings from XZ.” In: CoRR abs/2404.08987

(2024). url: https://dblp.uni-trier.de/db/journals/corr/corr2404.

html#abs-2404-08987.

[Lkcnt] Morten Linderud, kpcyrd, and contributors. archlinux-repro: A tool for users

to verify packages distributed by Arch Linux. 2017–present. url: https://

github.com/archlinux/archlinux-repro/ (visited on July 17, 2025).

[LZ21] Chris Lamb, and Stefano Zacchiroli. “Reproducible Builds: Increasing the

Integrity of Software Supply Chains”. In: CoRR abs/2104.06020 (2021). arXiv:

2104.06020. url: https://arxiv.org/abs/2104.06020.

[Mar+nt] Gregor Martynus, Pierre Vanduynslager, Matt Travi, Stephan Bönnemann,

Rolf Erik Lekang, Johannes Jörg Schmidt, Finn Pauls, and Christoph Witzko.

semantic-release: Fully automated version management and package publish-

ing. [Version 24.2.6]. 2015–present. url: https://www.npmjs.com/package/

semantic-release (visited on July 3, 2025).

[Mil18] Danny Milosavljevic. Bootstrapping Rust. 2018. url: https://guix.gnu.

org/blog/2018/bootstrapping-rust/ (visited on July 3, 2025).

[Mun23] Phil Muncaster. Hundreds of Malicious Packages Found in npm Registry.

Infosecurity Magazine. 2023. url: https://www.infosecurity-magazine.

com/news/hundreds-malicious-packages-npm/ (visited on July 3, 2025).

[Nap25] Ernestas Naprys. Dozens of malicious packages on NPM collect host and

network data. Cybernews. 2025. url: https://cybernews.com/security/

82

https://dustycloud.org/blog/javascript-packaging-dystopia/
https://dustycloud.org/blog/javascript-packaging-dystopia/
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://www.debian.org/doc/manuals/developers-reference/index.en.html
https://dblp.uni-trier.de/db/journals/corr/corr2404.html#abs-2404-08987
https://dblp.uni-trier.de/db/journals/corr/corr2404.html#abs-2404-08987
https://github.com/archlinux/archlinux-repro/
https://github.com/archlinux/archlinux-repro/
https://arxiv.org/abs/2104.06020
https://arxiv.org/abs/2104.06020
https://www.npmjs.com/package/semantic-release
https://www.npmjs.com/package/semantic-release
https://guix.gnu.org/blog/2018/bootstrapping-rust/
https://guix.gnu.org/blog/2018/bootstrapping-rust/
https://www.infosecurity-magazine.com/news/hundreds-malicious-packages-npm/
https://www.infosecurity-magazine.com/news/hundreds-malicious-packages-npm/
https://cybernews.com/security/node-developers-targeted-by-malware-in-npm-packages/
https://cybernews.com/security/node-developers-targeted-by-malware-in-npm-packages/

node-developers-targeted-by-malware-in-npm-packages/ (visited on

July 3, 2025).

[Nic22] Shaun Nichols. More than 1,000 malware packages found in NPM repository.

TechTarget. 2022. url: https://www.techtarget.com/searchsecurity/

news/252512799/More-than-1000-malware-packages-found-in-NPM-

repository (visited on July 3, 2025).

[NOC22] NSA, ODNI, and CISA. Securing the Software Supply Chain: Recommended

Practices Guide for Developers. Executive Order (EO) 14028. Enduring Secu-

rity Framework. Aug. 2022. url: https://www.cisa.gov/sites/default/

files / publications / ESF _ SECURING _ THE _ SOFTWARE _ SUPPLY _ CHAIN _

DEVELOPERS.PDF (visited on July 3, 2025).

[NSA24] NSA. Recommendations for SBOM Management. Executive Order (EO) 14028.

2024. url: https://media.defense.gov/2023/Dec/14/2003359097/-1/-

1/0/CSI-SCRM-SBOM-MANAGEMENT.PDF (visited on July 3, 2025).

[Pre13] Tom Preston-Werner. Semantic Versioning. web. 2013. url: http://semver.

org/ (visited on July 3, 2025).

[Ray01] Eric S. Raymond. The cathedral and the bazaar: musings on Linux and open

source by an accidental revolutionary. eng. 2., überarb. und erw. A. With

a foreword by Bob Young. Beijing; Cambridge; Farnham; Köln; Paris; Se-

bastopol; Taip: O’Reilly Media, 2001, p. 241. isbn: 0-596-00108-8. url: http:

//www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/.

[RBCT] Continuous tests. Reproducible Builds. url: https://reproducible-builds.

org/ (visited on July 17, 2025).

[Rod+22] Josip Rodin, Osamu Aoki, Craig Small, and Raphaël Hertzog. Debian New

Maintainers’ Guide. Debian project. 2022. url: https://www.debian.org/

doc/manuals/maint-guide/index.en.html (visited on July 2, 2025).

[SB21] Lindsay Sterle, and Suman Bhunia. “On SolarWinds Orion Platform Secu-

rity Breach.” In: SmartWorld/SCALCOM/UIC/ATC/IOP/SCI. IEEE, 2021,

pp. 636–641. isbn: 978-1-6654-1236-0. url: https://dblp.uni-trier.de/

db/conf/uic/uic2021.html#SterleB21.

83

https://cybernews.com/security/node-developers-targeted-by-malware-in-npm-packages/
https://cybernews.com/security/node-developers-targeted-by-malware-in-npm-packages/
https://cybernews.com/security/node-developers-targeted-by-malware-in-npm-packages/
https://www.techtarget.com/searchsecurity/news/252512799/More-than-1000-malware-packages-found-in-NPM-repository
https://www.techtarget.com/searchsecurity/news/252512799/More-than-1000-malware-packages-found-in-NPM-repository
https://www.techtarget.com/searchsecurity/news/252512799/More-than-1000-malware-packages-found-in-NPM-repository
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2023/Dec/14/2003359097/-1/-1/0/CSI-SCRM-SBOM-MANAGEMENT.PDF
https://media.defense.gov/2023/Dec/14/2003359097/-1/-1/0/CSI-SCRM-SBOM-MANAGEMENT.PDF
http://semver.org/
http://semver.org/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://www.debian.org/doc/manuals/maint-guide/index.en.html
https://www.debian.org/doc/manuals/maint-guide/index.en.html
https://dblp.uni-trier.de/db/conf/uic/uic2021.html#SterleB21
https://dblp.uni-trier.de/db/conf/uic/uic2021.html#SterleB21

[Spr+20] Steve Springett, Dave Russo, Fick Garret, Herz JC, Scott John, Symons

Mark, Nallapareddy Pruthvi, and Garcia Bryan. Software Component Ver-

ification Standard. The OWASP Foundation. 2020. url: https://owasp.

org/www-project-software-component-verification-standard/ (vis-

ited on July 2, 2025).

[Tho84] Ken Thompson. “Reflections on trusting trust”. In: Communications of the

ACM 27.8 (Aug. 1984), pp. 761–763. url: https://www.cs.cmu.edu/

~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.

pdf.

[Tor+19] Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy, Reza

Curtmola, and Justin Cappos. “in-toto: Providing farm-to-table guarantees

for bits and bytes.” In: USENIX Security Symposium. Ed. by Nadia Heninger,

and Patrick Traynor. USENIX Association, 2019, pp. 1393–1410. url: https:

//dblp.uni-trier.de/db/conf/uss/uss2019.html#Torres-AriasAKC19.

[Tou25] Bill Toulas. Dozens of malicious packages on NPM collect host and network

data. BleepingComputer. 2025. url: https://www.bleepingcomputer.com/

news/security/dozens-of-malicious-packages-on-npm-collect-host-

and-network-data/ (visited on July 3, 2025).

[Veg+21] Andres Vega et al. Software Supply Chain Security Best Practices. Cloud Na-

tive Computing Foundation. 2021. url: https://project.linuxfoundation.

org/hubfs/CNCF_SSCP_v1.pdf (visited on July 2, 2025).

[W3JL] Usage statistics and market shares of JavaScript libraries. W3Techs - World

Wide Web Technology Surveys. url: https://w3techs.com/technologies/

overview/javascript_library (visited on July 3, 2025).

[Whe09] David A. Wheeler. “Fully Countering Trusting Trust through Diverse Double-

Compiling.” PhD thesis. George Mason University, Fairfax, Virginia, USA,

2009. url: https://dwheeler.com/trusting-trust/.

[zam22] zamfofex. Re: bringing npm packages to Guix. Message to a GNU Guix mailing

list. 2022. url: https://lists.gnu.org/archive/html/guix-devel/2022-

11/msg00234.html (visited on July 3, 2025).

84

https://owasp.org/www-project-software-component-verification-standard/
https://owasp.org/www-project-software-component-verification-standard/
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://dblp.uni-trier.de/db/conf/uss/uss2019.html#Torres-AriasAKC19
https://dblp.uni-trier.de/db/conf/uss/uss2019.html#Torres-AriasAKC19
https://www.bleepingcomputer.com/news/security/dozens-of-malicious-packages-on-npm-collect-host-and-network-data/
https://www.bleepingcomputer.com/news/security/dozens-of-malicious-packages-on-npm-collect-host-and-network-data/
https://www.bleepingcomputer.com/news/security/dozens-of-malicious-packages-on-npm-collect-host-and-network-data/
https://project.linuxfoundation.org/hubfs/CNCF_SSCP_v1.pdf
https://project.linuxfoundation.org/hubfs/CNCF_SSCP_v1.pdf
https://w3techs.com/technologies/overview/javascript_library
https://w3techs.com/technologies/overview/javascript_library
https://dwheeler.com/trusting-trust/
https://lists.gnu.org/archive/html/guix-devel/2022-11/msg00234.html
https://lists.gnu.org/archive/html/guix-devel/2022-11/msg00234.html

	List of Figures
	List of Listings
	List of Tables
	Abstract
	Streszczenie
	Introduction
	Problem formulation

	Contemporary guidance and standards in the field of software supply chain security
	Software Component Verification Standard
	Supply Chain Levels for Software Artifacts
	Secure Supply Chain Consumption Framework
	``Software Supply Chain Best Practices''
	``Securing the Software Supply Chain: Recommended Practices Guide''
	``Recommendations for SBOM Management''
	Summary

	Security tools leveraging reproducible builds
	in-toto apt-transport for Debian packages
	TEXTGRAYguix challenge command of GNU Guix
	Continuous tests

	Applicability of reproducibility workflows to different software ecosystems
	Degree of inclusion in Debian and GNU Guix
	Dependency tree sizes
	Age of the ecosystem
	Conflicting dependencies
	Difficult bootstrappability
	Inconvenience of system software distributions

	Overview of the npm ecosystem
	Recognized dependency types
	Statistical analysis of the npm ecosystem
	The most popular development dependencies
	Overlap of the most popular runtime and development dependencies

	Possible paradigms for hermeticity and reproducibility
	Paradigm 0 – lack of actual reproducibility
	Paradigm 1 – inputs determined by human-maintained references
	Paradigm 2 – reproducibility not applied to dependency resolution
	Paradigm 3 – deterministic dependency resolution inputs ensured
	Paradigm 4 – hermeticity relaxed and deterministic dynamic inputs allowed

	Automated package builds experiment
	Method and environment
	Build attempt results
	Dependency trees after removals of dependencies and their conflicts
	Dependency conflict counts
	Differences in build outputs produced during the experiment

	Conclusions
	Naming the main hindrance to packaging the npm ecosystem
	Developer-supplied lockfile being infrequently necessary
	Indispensibility of direct and indirect npm build dependencies
	Typical dependency tree sizes of npm projects
	Frequency of dependency conflicts in npm projects
	Package disfunctionality caused by dependency tree reduction
	Relevance of npm package distribution tags for successful dependency resolution
	Prototype for npm dependency resolution under Paradigm 3

	Summary
	Future work
	References

